Снова в школу

Исследовательская работа графы и их применение. Презентация к исследовательской работе по математике "теория графов в решении задач". г. Мурманск с помощью графа

Номинация «Отчизны славные сыны»

Тема: «Чулков Алексей Петрович - Герой Советского Союза»

Галиуллин Равиль

МБОУ «Юхмачинская средняя общеобразовательная школа имени Героя Советского Союза Чулкова Алексея Петровича»

ученик 7 класса

Москвина Г.А.

1.Введение.

2. Основная часть

2.1. Жизнь и подвиг А.П. Чулкова

2.2. Память - увековечение имени Героя Советского Союза в мемориальных объектах

3.Заключение

4.Список используемой литературы

1. Введение

Великая Отечественная война - одно из самых ужасных испытаний, выпавших на долю нашего народа. Тяжесть и кровопролитие войны оставили большой отпечаток в сознании людей. Патриотизм во все времена в Российском государстве был чертой национального характера.

В каждом поселке и селе есть свои герои, которые прославили нашу страну. К сожалению, в последнее время говорится о том, что подрастающее поколение стало забывать о подвигах наших дедов и прадедов. И кругом появляются информационные взбросы, стремящиеся в который раз очернить подвиг советского народа. Поэтому данная тема поисково-исследовательской работы актуальна для решения такой проблемы, как воспитание нравственно-патриотической личности. Наша задача помнить о героях, беречь эту память и передавать последующим поколениям.

Память о прошлом … Нет, это не просто свойство человеческого сознания, его способность сохранять следы минувшего.

Память – это связующее звено между прошлым и будущим. Сколько бы лет ни прошло, сколько бы веков ни минуло, мы должны с благодарностью помнить тех, кто избавил мир от коричневой чумы, а наш народ – от погибели. И не дать переписать историю.

Сейчас, когда на Западе в бывших союзных республиках Прибалтики, на Украине подвиги солдат Красной Армии ставят в один ряд со службой на стороне фашистов, возводят памятники эсесовцам, мы снова и снова должны вспоминать тех, кто положил свою жизнь на алтарь Отчизны.

Цель проекта: изучить боевой путь и подвиг Героя Советского Союза, чье имя носит наша школа.

Задачи: - познакомиться с алгоритмом работы над проектом;

Изучить всю имеющуюся литературу и публикации в средствах массовой информации по теме исследования;

Проанализировать полученную информацию и сделать выводы

Работа посвящена исследованию биографии Чулкова Алексея Петровича, героя Советского Союза, родившегося в селе Юхмачи Татарской АССР.

Герой Советского Союза Чулков Алексей Петрович – наш земляк, его имя носит наша школа села Юхмачи. Кто он, как жил, о чем мечтал, за что ему было присвоено звание Героя Советского Союза?

После окончания Великой Отечественной войны прошло более 70 лет. На просторах нашей Родины стоят обелиски павшим, тем, кто не вернулся с полей сражений. Они были молоды. Когда они успели сделать столько, что были представлены к высшей награде Родины? Зачем они пожертвовали собой? Неужели им не хотелось выжить?

Тема моей исследовательской работы: Судьба моего земляка.

Этот вопрос я решил осветить подробнее. Для этого я посетил школьный музей, где Алексею Петровичу, посвящен раздел. Также в своей работе я опирался на воспоминания Героя Советского Союза, Генерала – полковника Решетникова Василия Васильевича, Википедию, а также книгу Ю.Н. Худова «Крылатый комиссар».

Методы: В ходе реализации проекта я познакомился с алгоритмом ведения исследовательской работы, изучал краеведческую литературу, просматривал имеющуюся литературу, материалы интернета, воспоминания сослуживца.

Значимость исследования: этот материал можно использовать на уроках истории, при проведении внеклассных мероприятий, посвященных памятным и юбилейным датам, музейным урокам.

2. Основная часть

2.1. Жизнь и подвиг А.П. Чулкова

Чулков Алексей Петрович родился 30 апреля 1908 года в селе Юхмачи Российской империи, ныне Алькеевского района Татарстана, в семье рабочего. По национальности русский. В 1920 году, после ранения на фронте, умирает отец. Четверо детей остались сиротами. Старший Сергей, ещё раньше уехал в Карабаново, к родным, где устраивается на фабрику. Вместе с десятилетним Алексеем у матери остались две младшие сестры – Оля и Полина. В этот год в Поволжье разразилась страшная засуха. Начался большой голод. Лёша устраивается работать в батраках у кулака, за скудную еду пасёт его стадо. Однажды хозяин избил Лешу. И мальчишка, простившись с матерью и сестрами, решает уехать к брату в Карабаново. Денег на дорогу и еду – ни копейки. С ватагой таких же беспризорников Лёша пробирается в сторону Москвы. На вокзале в Костроме попали в очередную облаву. Так Алексей оказался в Костромском детдоме, где он закончил оставшиеся два класса и со свидетельством об окончании начальной школы приехал 14-летним приехал в Карабаново

C 1925 года - житель посёлка Карабаново (ныне город) Владимирской области. Здесь Алексей работал на ткацкой фабрике 3-го Интернационала с 1927 по 1933 года. Здесь на фабрике он встретил свою будущую жену Веру. С которой у Алексея Петровича было четверо сыновей.

Член ВКП(б) /КПСС с 1931 года. Окончил рабфак и 1 курс Московского педагогического института. Работал в Москве.

Призван в Красную Армию в 1933 году, в 1934 году окончил Луганскую военно-авиационную школу. Свои первые боевые вылеты совершил в период советско-финской войны 1939-1940 годов, успешно участвовал в бомбардировках и штурмовках с воздуха укреплений линии Маннергейма. Боевое мастерство и умелая плодотворная политработа лётчика, старшего политрука Алексея Чулкова были высоко оценены командованием. Он был награждён орденом Красного Знамени, ему было присвоено воинское звание батальонного комиссара.

В боях Великой Отечественной войны с первых дней. К ноябрю 1942 года заместитель командира эскадрильи по политической части 751-го авиаполка майор Алексей Чулков совершил 114 боевых вылетов на бомбардировку военно-промышленных объектов в глубоком тылу противника и его войск на переднем крае.

7 ноября 1942 года при возвращении с боевого задания в районе города Орша его самолёт был подбит зенитным огнём и потерпел катастрофу в районе Калуги.

В 2004 году вышла в свет книга Василия Васильевича Решетникова - Героя Советского Союза, генерал – полковника.

В годы войны летчика 751 полка 17 авиадивизии дальних бомбардировщиков. В 1942 году воевал в эскадрильи, комиссаром которой был Чулков. Неоднократно летал под его руководством на боевые задания. О своем комиссаре Василий Васильевич вспоминает так: В ту ночь, с седьмого на восьмое ноября 1942 года, не вернулся с боевого задание экипаж комиссара Алексея Петровича Чулкова. Хоть и был он по штату комиссаром Урутинской эскадрильи – своим комиссаром почитал его весь полк, вызывая невольную ревность у других, в том числе и полковых, но нелетающих политработников.

Тонкая это штука – авторитет, особенно комиссарский. Критерии служебного положения тут совсем не срабатывают, если даже успешно обеспечивают весь комплекс внешних примет почитания. В твёрдой цене уважения котируется едино только нравственно и интеллектуальной масштаб личности. Именно личности, а не должности. На войне ценился поступок, а уж если слово – то живое, а не мёртво-казённое.

Алексей Петрович был далеко не хрестоматийным комиссаром – и внешне совсем неброский, и уж никак не трибунный. Больше славился как прекрасный боевой летчик, и, помниться, никого не морочил ни докладами, ни назиданиями. Был дан ему крепкий природный ум, добрая душа и твёрдый боевой дух. Прошел он, как верный солдат своей Отчизны, советско-финскую войну и не замешкался в первый день Великой Отечественной. Теперь счет его боевых вылетов шёл по второй сотне. Летал он наравне с нами, как рядовой командир корабля, но взлетать любил первым, а может, и не любил, не видев в том тактический преимуществ, но место впереди эскадрильи считал, видимо, своим.

Чулков после бомбёжки Оршанского аэродрома шёл уже домой и был в получасе от своих, как вдруг попали под обстрел, снаряд попал в правый мотор. Он задымил, забухтел, закашлялся, пришлось выключить. Винт, к несчастью продолжал вращаться, скольжение стало неизбежным, и машина пошла с небольшим снижением. К линии фронта высоты осталось совсем немного, но Алексей Петрович и его неизменный штурман Григорий Чумаш по пути нашли в районе Калуге площадку базирования наших истребителей и с ходу решили садиться.

Ночью такие аэродромы не работают и даже не имеют средств ночной посадки, но плошки дежурного «Т» горели, и вдоль полосы приземления Алексей Петрович зашёл удачно, разве что с некоторым перелётом. Аэродромчик был крохотный, для маскировки обставлен стожками, макетами животных, и, когда самолёт оказался на самом его краю, стрелки - радисты, увидя этот «сельский пейзаж», в один голос заорали: «Ложный аэродром!» Алексей Петрович поддался крику, и хотя в следующее мгновение Чумаш закричал: «Садись!» - было уже поздно. Левый мотор на полном газу тащил машину дальше, но вернуть потерянную скорость и высоту, да ещё при одной не убравшейся стойки шасси, он был не в силах. На развороте, за пределами аэродрома, самолёт задел крылом за сосны, провалился к земле и загорелся. Пламя от баков поползло к пилотной кабине. Чулков был ранен, и сам подняться не мог. Там и сгорел . В огне погиб и радист Дьяков. Превозмогая боль от ушибов и ссадин, через турельное кольцо выбрался стрелок Глазунов, но сквозь огонь пробиться к командиру не смог. Гриша Чумаш был выброшен из своей разбитой штурманской скорлупы и при падении в двух местах сломал в бедре ногу. Он отполз подальше от огня, забинтовал клочками белья кровоточащие раны и стал ждать помощи. Она пришла с аэродрома. После многочисленных операций нога заметно укоротилась, и с лётной работой пришлось распрощаться.

Так погиб наш легендарный комиссар.

За год с небольшим войны совершил 119 боевых вылетов, 111 из них ночью.

Бомбил Берлин и другие города и военные объекты Германии. Нанося бомбовые удары, поддерживал наши наземные войска на передовой. Ценой своей жизни, приближая час Победы.

В декабре на построении полка был зачитан приказ. Там есть такие слова:

За беспредельную преданность Родине, за хорошую организацию боевой работы эскадрильи, за личную отвагу и героизм в бою, презирая смерть, батальонный комиссар Чулков достоин высшей правительственной награды присвоения звания «Героя Советского Союза» с вручением ордена Ленина и медали «Золотая Звезда» - Посмертно

Похоронен в городе Калуге.

Награды

    Указом Президиума Верховного Совета СССР от 31 декабря 1942 года за подвиг и отличное выполнение боевых заданий командования майору Чулкову Алексею Петровичу посмертно присвоено звание Героя Советского Союза.

    Награждён двумя орденами Ленина и двумя орденами Красного Знамени.

Из наградного листа:

Майор Чулков работает заместителем командира авиаэскадрильи по политической части. Летая на самолёте Ил-4 в составе ночного экипажа, где штурман капитан Чумаш, стрелок-радист старшина Козловский и воздушный стрелок старший сержант Дьяков.

В действующей армии находится с первых дней Отечественной войны. За этот период им произведено 114 боевых самолёто-вылетов, из них ночью 111 и все с отличным выполнением боевого задания. Летал на бомбардировку военно-промышленных объектов и политических центров противника в глубоком тылу: Берлин - 2 раза, Будапешт - 1 раз, Данциг - 1 раз, Кёнигсберг - 1 раз, Варшава - 2 раза.

За отличное выполнение боевых заданий командования по разгрому германского фашизма награждён орденом Ленина и орденом Красного Знамени. После награждения произвёл 55 боевых вылетов. Работая военным комиссаром авиаэскадрильи, отлично зарекомендовал себя как воспитатель личного состава в духе преданности Родине и ненависти к врагу. Его эскадрилья за время боевых действий совершила 951 самолёто-вылет по врагу. Товарищ Чулков своим личным примером воодушевляет подчинённый личный состав на подвиги. Дисциплинирован, требовательный к себе и подчинённым. Среди личного состава пользуется заслуженным авторитетом. Делу партии Ленина и социалистической Родине предан.

За отличное выполнение боевых заданий командования по разгрому германского фашизма и проявленные при этом мужество и героизм майор Чулков достоин правительственной награды ордена Ленина.

Командир 751 АП ДД Герой Советского Союза
подполковник ТИХОНОВ 4 ноября 1942 года.

Заключение Военного Совета.

Достоин правительственной награды звания Героя Советского Союза.

Командующий авиацией Член Военного Совета
авиации дальнего действия
генерал авиации ГОЛОВАНОВ
дивизионный комиссар ГУРЬЯНОВ
30 ноября 1942 г.

2.2. Память - увековечение имени Героя Советского Союза в мемориальных объектах

    Мемориал Славы на Поклонной горе в Москве

    Мемориальный комплекс г. Калуги

    Имя Героя носит улица в городе Карабаново Владимирской области.

    В 2004 году вышла книга В. В. Решетникова «Что было - то было», где говорится о Чулкове.

    Документальная повесть «Крылатый комиссар» Ю.Н. Худова

    В 2000 году нашей школе присвоено имя Героя-земляка.

Директором нашей школы является родственник Чулкова Алексея Петровича Чулков Петр Александрович. Во много, благодаря его деятельности, наша школа носит имя Героя. Петр Александрович и сам является, достойным сыном Отечества. В 1983 году был призван в Вооруженные Силы СССР. Службу проходил в Республике Афганистан, командир отделения взвода охраны отдельного мотострелкового сопровождения. Он со своими боевыми товарищами сопровождал колонны КАМАЗов с грузами. Однажды колонна попала под обстрел, и Пётр Александрович был ранен.

Чулков Пётр Александрович награждён: звездой «Участник Афганской войны», орденским знаком «Воин – интернационалист», медалью «От благодарного афганского народа», Грамотой Президиума Верховного Совета СССР «За мужество и воинскую доблесть».

Его отличает скромность, ответственность, строгость, элегантность. Он талантливый руководитель и организатор педагогического и ученического коллективов. Под его руководством школа является одной из лучших школа района.

    Экспозиция в школьном музея села Юхмачи

    Парк Победы в г. Казань

    Памятник посвященный Чулкову А.П. в селе Юхмачи, на Родине Героя.

В.В. Решетников с внучкой Чулкова А.П. Еленой Шушариной. Москва 2007 год.

3.Заключение

Жизнь и подвиг, мы часто слышим эти слова. Простой человек из глубинки, которому было 34 года, оказался настоящим героем войны, кровопролитных сражений. А. П. Чулков стал Героем не просто так, он был настоящим человеком, воспитанным семьей, Родиной.

Работа над материалами о Герое способствовала определению духовных ориентиров, нравственных ценностей, общечеловеческих приоритетов, формированию патриотического сознания, как одной из важнейших ценностей и основ духовно-нравственного единства.

И становится понятной необходимость участия в делах Российского движения школьников, членом которого я являюсь. Это общественно-государственная детско-юношеская организация, образована решением учредительного собрания от 28 марта 2016года в Московском университете имени М.В. Ломоносова. В соответствии с Указом Президента РФ от 29 октября 2015года. РДШ работает по следующим направлениям: - военно-патриотеское – «Юнармия»

Личностное развитие

Гражданский активизм (волонтерство, поисковая работа, изучение истории, краеведение)

Информационно-медийное.

4. Список литературы:

1.В.В. Решетников «Что было- то было», М., 2004г.

2. Ю.Н. Худов «Крылатый комиссар»

3. Материалы школьного музея села Юхмачи

4. Фото из личного архива Чулкова П.А.

5.http://ru.wikipedia.org

Форма заявки участника

Республиканского конкурса проектов «Истории славные страницы.

Школа Героев» для обучающихся 5-7 классов общеобразовательных

Организаций Республики Татарстан, носящих имя Героя

Территория РТ, Алькеевский район, село Юхмачи

Номинация «Отчизны славные сыны»

Имя, фамилия участника Равиль Галиуллин

Дата рождения 05. 01.2005

Возрастная группа 7 класс

Полное название образовательной организации МБОУ «Юхмачинская средняя общеобразовательная школа имени Героя Советского Союза Чулкова Алексея Петровича» село Юхмачи, ул. Школьная, дом 10 а

Номер телефона 89276781352

Е-mail [email protected]

ФИО педагога (полностью) Москвина Галина Александровна

Контактный телефон педагога 89270389187

Согласие на обработку персональных данных

Я, Шубина Татьяна Николаевна , паспорт 9200097914 , выдан УВД Авиастроительного р-на г. Казани, 01.11.2002________________________________________________________
(когда, кем)

РТ, Алькеевский район, с.Юхмачи, ул. Школьная 4.

____________________________________________________________________________________________________________________

даю согласие на обработку персональных данных моего ребёнка Галиуллина Равиля Рашитовича

РТ, Алькеевский район, с.Юхмачи, ул. Школьная 4.

оператору Министерства образования и науки Республики Татарстан для участия в конкурсе.

Перечень персональных данных, на обработку которых дается согласие: фамилия, имя, отчество, школа, класс, домашний адрес, дата рождения, телефон, адрес электронной почты, результаты участия в заключительном этапе конкурса.

Оператор имеет право на сбор, систематизацию, накопление, хранение, уточнение, использование, передачу персональных данных третьим лицам – образовательным организациям, органам управления образованием районов (городов), Министерству образования и науки РТ, Министерству образования РФ, иным юридическим и физическим лицам, отвечающим за организацию и проведению различных этапов конкурса, обезличивание, блокирование, уничтожение персональных данных.

Данным заявлением разрешаю считать общедоступными, в том числе выставлять в сети Интернет, следующие персональные данные моего ребёнка: фамилия, имя, класс, школа, доу, результат заключительного этапа конкурса, а также публикацию в открытом доступе сканированной копии работы.

Обработка персональных данных осуществляется в соответствии с нормами Федерального закона Российской Федерации от 27 июля 2006 года № 152- ФЗ «О персональных данных».

Данное Согласие вступает в силу со дня его подписания и действует в течении 3-х лет.

______________________ _____________________________(личная подпись, дата)

Третья городская научная

конференция учащихся

Информатика и математика

Исследовательская работа

Круги Эйлера и теория графов в решении задач

школьной математики и информатики

Валиев Айрат

Муниципальное общеобразовательное учреждение

«Средняя общеобразовательная школа №10 с углубленным изучением

отдельных предметов», 10 Б класс, г. Нижнекамск

Научные руководители:

Халилова Нафисе Зиннятулловна, учитель математики

Учитель информатики

г. Набережные Челны

Введение. 3

Глава 1. Круги Эйлера. 4

1.1. Теоретические основы о кругах Эйлера. 4

1.2. Решение задач, применяя круги Эйлера. 9

Глава 2.О графах 13

2.1.Теория графов. 13

2.2. Решение задач, используя графы. 19

Заключение. 22

Список литературы. 22

Введение

«Всё наше достоинство заключено в мысли.

Не пространство, не время, которых мы не можем заполнить,

возвышает нас, а именно она, наша мысль.

Будем же учиться хорошо мыслить.»

Б. Паскаль,

Актуальность. Основной задачей школы является не подача детям большого объёма знаний, а обучение учащихся самим добывать знания, умению перерабатывать эти знания и применять их в каждодневной жизни. Поставленные задачи может решить ученик, обладающий не только умением хорошо и много работать, но и ученик с развитым логическим мышлением. В связи с этим во многие школьные предметы вложены различного типа задачи, которые и развивают у детей логическое мышление. Решая эти задачи, мы применяем различные приёмы решения. Одни из приёмов решения – это использование кругов Эйлера и граф.

Цель исследования : изучение материала, применяемого на уроках математики и информатики, где используются круги Эйлера и теория графов, как один из приемов решения задач.

Задачи исследования :

1. Изучить теоретические основы понятий: «Круги Эйлера», «Графы».

2. Решить задачи школьного курса вышеназванными методами.

3. Составить подборку материала для использования учениками и учителями на уроках математики и информатики.

Гипотеза исследования: применение кругов Эйлера и графов повышают наглядность при решении задач.

Предмет исследования: понятия: «Круги Эйлера», «Графы», задачи школьного курса математики и информатики.

Глава 1. Круги Эйлера.

1.1. Теоретические основы о кругах Эйлера.

Эйлеровы круги (круги Эйлера) - принятый в логике способ моделирования, наглядного изображения отношений между объемами понятий с помощью кругов, предложенный знаменитым математиком Л. Эйлером (1707–1783).

Обозначение отношений между объемами понятий посредством кругов было применено еще представителем афинской неоплатоновской школы - Филопоном (VI в.), написавшим комментарии на «Первую Аналитику» Аристотеля.

Условно принято, что круг наглядно изображает объем одного какого-нибудь понятия. Объем же понятия отображает совокупность предметов того или иного класса предметов. Поэтому каждый предмет класса предметов можно изобразить посредством точки, помещенной внутри круга, как это показано на рисунке:

Группа предметов, составляющая вид данного класса предметов, изображается в виде меньшего круга, нарисованного внутри большего круга, как это сделано на рисунке.

https://pandia.ru/text/78/128/images/image003_74.gif" alt="пересекающиеся классы" width="200" height="100 id=">

Такое именно отношение существует между объемом понятий «учащийся» и «комсомолец». Некоторые (но не все) учащиеся являются комсомольцами; некоторые (но не все) комсомольцы являются учащимися. Незаштрихованная часть круга А отображает ту часть объема понятия «учащийся», которая не совпадает с объемом понятия «комсомолец»; незаштрихованная часть круга B отображает ту часть объема понятия «комсомолец», которая не совпадает с объемом понятия «учащийся». 3аштрихованиая часть, являющаяся общей для обоих кругов, обозначает учащихся, являющихся комсомольцами, и комсомольцев, являющихся учащимися.

Когда же ни один предмет, отображенный в объеме понятия A, не может одновременно отображаться в объеме понятия B, то в таком случае отношение между объемами понятий изображается посредством двух кругов, нарисованных один вне другого. Ни одна точка, лежащая на поверхности одного круга, не может оказаться на поверхности другого круга.

https://pandia.ru/text/78/128/images/image005_53.gif" alt="понятия с одинаковыми объемами - совпадающие круги" width="200" height="100 id=">

Такое отношение существует, например, между понятиями «родоначальник английского материализма» и «автор „Нового Органона“». Объемы этих понятий одинаковы, в них отобразилось одно и то же историческое лицо - английский философ Ф. Бэкон.

Нередко бывает и так: одному понятию (родовому) подчиняется сразу несколько видовых понятий, которые в таком случае называются соподчиненными. Отношение между такими понятиями изображается наглядно посредством одного большого круга и нескольких кругов меньшего размера, которые нарисованы на поверхности большего круга:

https://pandia.ru/text/78/128/images/image007_46.gif" alt="противоположные понятия" width="200" height="100 id=">

При этом видно, что между противоположными понятиями возможно третье, среднее, так как они не исчерпывают полностью объема родового понятия. Такое именно отношение существует между понятиями «легкий» и «тяжелый». Они исключают друг друга. Нельзя об одном и том же предмете, взятом в одно и то же время и в одном и том же отношении, сказать, что он и легкий, и тяжелый. Но между данными понятиями есть среднее, третье: предметы бывают не только легкого и тяжелого веса, но также и среднего веса.

Когда же между понятиями существует противоречащее отношение, тогда отношение между объемами понятий изображается иначе: круг делится на две части так: А - родовое понятие, B и не-B (обозначается как B) - противоречащие понятия. Противоречащие понятия, исключают друг друга и входят в один и тот же род, что можно выразить такой схемой:

https://pandia.ru/text/78/128/images/image009_38.gif" alt="субъект и предикат определения" width="200" height="100 id=">

Иначе выглядит схема отношения между объемами субъекта и предиката в общеутвердительном суждении, не являющемся определением понятия. В таком суждении объем предиката больше объема субъекта, объем субъекта целиком входит в объем предиката. Поэтому отношение между ними изображается посредством большого и малого кругов, как показано на рисунке:

Школьные библиотеки" href="/text/category/shkolmznie_biblioteki/" rel="bookmark">школьной библиотеке , 20 - в районной. Сколько из пятиклассников:

а) не являются читателями школьной библиотеки;

б) не являются читателями районной библиотеки;

в) являются читателями только школьной библиотеки;

г) являются читателями только районной библиотеки;

д) являются читателями обеих библиотек?

3. Каждый ученик в классе изучает либо английский, либо французский язык , либо оба этих языка. Английский язык изучают 25 человек, французский - 27 человек, а тот и другой -18 человек. Сколько всего учеников в классе?

4. На листе бумаги начертили круг площадью 78 см2 и квад­рат площадью 55 см2. Площадь пересечения круга и квад­рата равна 30 см2. Не занятая кругом и квадратом часть листа имеет площадь 150 см2. Найдите площадь листа.

5. В детском саду 52 ребенка. Каждый из них любит либо пирожное, либо мороженое, либо и то, и другое. Половина детей любит пирожное, а 20 человек - пирожное и мороженое. Сколько детей любит мороженое?

6. В ученической производственной бригаде 86 старшеклас­сников. 8 из них не умеют работать ни на тракторе, ни на комбайне. 54 ученика хорошо овладели трактором, 62 - комбайном. Сколько человек из этой бригады мо­гут работать и на тракторе, и на комбайне?

7. В классе 36 учеников. Многие из них посещают круж­ки: физический (14 человек), математический (18 чело­век), химический (10 человек). Кроме того, известно, что 2 человека посещают все три кружка; из тех, кто по­сещает два кружка, 8 человек занимаются в математи­ческом и физическом кружках, 5 - в математическом и химическом, 3 - в физическом и химическом. Сколь­ко человек не посещают никаких кружков?

8. 100 шестиклассников нашей школы участвовали в опро­се, в ходе которого выяснялось, какие компьютерные игры им нравятся больше: симуляторы, квесты или стратегии. В результате 20 опрошенных назвали симуляторы, 28 - квесты, 12 - стратегии. Выяснилось, что 13 школьников отдают одинаковое предпочтение симуляторам и квестам, 6 учеников - симуляторам и стратегиям, 4 ученика - квестам и стратегиям, а 9 ребят совершенно равнодушны к названным компьютерным играм. Некоторые из школьников ответили, что одинаково увлекаются и симуляторами, и квестами, и стратегиями. Сколько таких ребят?

Ответы

https://pandia.ru/text/78/128/images/image012_31.gif" alt="Овал: А " width="105" height="105">1.

А – шахматы 25-5=20 – чел. умеют играть

В – шашки 20+18-20=18 – чел играют и в шашки, и в шахматы

2. Ш – множество посетителей школьной библиотеки

Р – множество посетителей районной библиотеки

https://pandia.ru/text/78/128/images/image015_29.gif" width="36" height="90">.jpg" width="122 height=110" height="110">

5. 46. П – пирожное, М – мороженое

6 – детей любят пирожное

6. 38. Т – трактор, К – комбайн

54+62-(86-8)=38 – умеют работать и на тракторе и на комбайне

графами" и систематически изучать их свойства.

Основные понятия.

Первое из основных понятий теории графов - это понятие вершины. В теории графов оно принимается в качестве первичного и не определяется. Его нетрудно представить себе на собственном интуитивном уровне. Обычно вершины графа наглядно изображаются в виде окружностей, прямоугольников другими фигурами (рис.1). Хотя бы одна вершина должна обязательно присутствовать в каждом графе.

Другое основное понятие теории графов - дуги. Обычно дуги представляют собой отрезки прямых или кривых, соединяющих вершины. Каждый из двух концов дуги должен совпадать с какой-нибудь вершиной. Случай, когда оба конца дуги совпадают с одной и той же вершиной, не исключается. Например, на рис.2 - допустимые изображения дуг, а на рис.3 - недопустимые:

В теории графов используются дуги двух типов - ненаправленными или направленными (ориентированными). Граф, содержащий только ориентированные дуги, называется ориентированным графом или орграфом.

Дуги могут быть однонаправленными, при этом каждая дуга имеет только одно направление, или двунаправленными.

В большинстве применений можно без потери смысла заменить ненаправленную дугу на двунаправленную, а двунаправленную - на две однонаправленных дуги. Например, так, как показано на рис. 4.

Как правило, граф либо сразу строится таким образом, чтобы все дуги имели одинаковую характеристику направленности (например, все - однонаправленные), либо приводится к такому виду путем преобразований. Если дуга AB - направленная, то это значит, что из двух ее концов один (A) считается началом, а второй (B) - концом. В этом случае говорят, что начало дуги AB есть вершина A, а конец - вершина B, если дуга направлена от A к B, или что - дуга AB исходит из вершины A и входит B (рис. 5).

Две вершины графа, соединенные какой-либо дугой (иногда, независимо от ориентации дуги) называют смежными вершинами.

Важным понятием при исследовании графов является понятие пути. Путь A1,A2,...An определяется как конечная последовательность (кортеж) вершин A1,A2,...An и дуг A1, 2,A2 ,3,...,An-1, n последовательно соединяющих эти вершины.

Важным понятием в теории графов является понятие связности. Если для любых двух вершин графа существует хотя бы один соединяющий их путь - граф называется связным.

Например, если изобразить в виде графа систему кровообращения человека, где вершины соответствуют внутренним органам, а дуги - кровеносным капиллярам, то такой граф, очевидно, является связным. Можно ли утверждать, что система кровообращения двух произвольных людей является несвязным графом? Очевидно, нет, поскольку в природе наблюдаются т. н. “сиамские близнецы”.

Связность может быть не только качественной характеристикой графа (связный/несвязный), но и количественной.

Граф называется K-связным, если каждая его вершина связана с K других вершин. Иногда говорят о слабо - и сильносвязанных графах. Эти понятия субъективны. Исследователь называет граф сильносвязанным, если для каждой его вершины количество смежных вершин, по мнению исследователя, велико.

Иногда связность определяют как характеристику не каждой, а одной (произвольной) вершины. Тогда появляются определения типа: граф называется K-связным, если хотя бы одна его вершина связана с K других вершин.

Некоторые авторы определяют связность как экстремальное значение количественной характеристики. Например, граф является K-связным, если в графе существует хотя бы одна вершина, связанная с K смежными вершинами и не существует ни одной вершины, связанной с более чем K смежными вершинами.

Например, детский рисунок человека (рис. 6) представляет собой граф с максимальной связностью равной 4.

Еще одна характеристика графа, исследуемая в ряде задач, часто называется мощностью графа. Эта характеристика определяется как количество дуг, связывающих две вершины. При этом дуги, имеющие встречное направление, часто рассматриваются раздельно.

Например, если вершины графа представляю собой узлы обработки информации , а дуги - однонаправленные каналы передачи информации между ними, то надежность системы определяется не суммарным количеством каналов, а наименьшим количеством каналов в любом направлении.

Мощность, как и связность, может определяться как для каждой пары вершин графа, так и для некоторой (произвольной) пары.

Существенная характеристика графа - его размерность. Под этим понятием обычно понимают количество вершин и дуг, существующих в графе. Иногда эта величина определяется как сумма количеств элементов обоих видов, иногда - как произведение, иногда - как количество элементов только одного (того или иного) вида.

Разновидности графов.

Объекты, моделируемые графами, имеют весьма разнообразную природу. Стремление отразить эту специфику привело к описанию большого количества разновидностей графов. Процесс этот продолжается и в настоящее время. Многие исследователи для своих конкретных целей вводят новые разновидности и выполняют их математическое исследование с большим или меньшим успехом.

В основе всего этого многообразия лежат несколько довольно простых идей, о которых мы здесь и будем говорить.

Окраска

Окраска графов - весьма популярный способ модификации графов.

Этот прием позволяет, и повысить наглядность модели и увеличить математическую загруженность. Способы введения окраски могут быть различными. По тем или иным правилам окрашиваются как дуги, так и вершины. Окраска может быть однократно определена или меняться с течением времени (т. е. при приобретении графом каких-либо свойств); цвета можно преобразовывать по тем или иным правилам, и т. д.

Например, пусть граф представляет собой модель кровообращения человека, где вершины соответствуют внутренним органам, а дуги - кровеносным капиллярам. Окрасим артерии в красный цвет, а вены - в синий. Тогда очевидно справедливость следующего утверждения - в рассматриваемом графе (рис. 8) существуют, и при этом только две, вершины, имеющие исходящие красные дуги (на рисунке красный цвет изображен жирно).

Дольность

Иногда элементы объекта, моделируемые вершинами, имеют существенно различный характер. Или к реально существующим в объекте элементам в процессе формализации оказывается полезным добавить некоторые фиктивные элементы. В этом, и некоторых других случаях, вершины графа естественно разделить на классы (доли). Граф, содержащий вершины двух типов, называют двудольным и т. д. При этом в число ограничений графа вносятся правила, касающиеся взаимоотношений вершин разных типов. Например: “не существует дуги, которая бы соединяла вершины одного типа”. Одна из разновидностей графов такого рода называется “сеть Петри” (рис. 9) и имеет достаточно широкое распространение. Более подробно сети Петри будут рассмотрены в следующей статье этого цикла.

Понятие дольности может быть применено не только к вершинам, но и к дугам.

2.2. Решение задач, используя графы.

1. Задача о Кенигсбергских мостах. На рис. 1 представлен схематический план центральной части города Кенигсберг (ныне Калининград), включающий два берега реки Перголя, два острова в ней и семь соединяющих мостов. Задача состоит в том, чтобы обойти все четыре части суши, пройдя по каждому мосту один раз, и вернуться в исходную точку. Эта задача была решена (показано, что решение не существует) Эйлером в 1736 году. (рис. 10).

2. Задача о трех домах и трех колодцах. Имеется три дома и три колодца, каким-то образом расположенные на плоскости. Провести от каждого дома к каждому колодцу тропинку так, чтобы тропинки не пересекались (рис. 2). Эта задача была решена (показано, что решение не существует) Куратовским в 1930 году. (рис. 11).

3. Задача о четырех красках. Разбиение на плоскости на непересекающиеся области называется картой. Области на карте называются соседними, если они имеют общую границу. Задача состоит в раскрашивании карты таким образом, чтобы никакие две соседние области не были закрашены одним цветом (рис. 12). С конца позапрошлого века известна гипотеза, что для этого достаточно четырех красок. В 1976 году Аппель и Хейкен опубликовали решение задачи о четырех красках, которое базировалось на переборе вариантов с помощью компьютера. Решение этой задачи «программным путем» явилось прецедентом, породившим бурную дискуссию, которая отнюдь не закончена. Суть опубликованного решения состоит в том, чтобы перебрать большое, но конечное число (около 2000) типов потенциальных контрпримеров к теореме о четырех красках и показать, что ни один случай контрпримером не является. Этот перебор был выполнен программой примерно за тысячу часов работы суперкомпьютера. Проверить «вручную» полученное решение невозможно – объем перебора выходит далеко за рамки человеческих возможностей. Многие математики ставят вопрос: можно ли считать такое «программное доказательство» действительным доказательством? Ведь в программе могут быть ошибки… Методы формального доказательства правильности программ не применимы к программам такой сложности, как обсуждаемая. Тестирование не может гарантировать отсутствие ошибок и в данном случае вообще невозможно. Таким образом, остается уповать на программистскую квалификацию авторов и верить, что они сделали все правильно.

4.

Задачи Дьюдени.

1. Смит, Джонс и Робинсон работают в одной поездной бригаде машинистом, кондуктором и кочегаром. Профессии их названы не обязательно в том же порядке, что и фамилии. В поезде, который обслуживает бригада, едут трое пассажиров с теми же фамилиями. В дальнейшем каждого пассажира мы будем почтительно называть «мистер» (м-р)

2. М-р Робинсон живет в Лос-Анджелесе.

3. Кондуктор живет в Омахе.

4. М-р Джонс давно позабыл всю алгебру, которой его учили в колледже .

5. Пассажир – однофамилец кондуктора живет в Чикаго.

6. Кондуктор и один из пассажиров, известный специалист по математической физике, хотя в одну церковь.

7. Смит всегда выигрывает у кочегара, когда им случается встречаться за партией в бильярд.

Как фамилия машиниста? (рис.13)

Здесь 1-5 – номера ходов, в скобках – номера пунктов задачи, на основании которых сделаны ходы (выводы). Далее следует из п.7, что кочегар не Смит, следовательно, Смит-машинист.

Заключение

Анализ теоретического и практического материала по исследуемой теме позволяет сделать выводы об успешности применения кругов Эйлера и графов для развития логического мышления детей, привития интереса к изучаемому материалу, применению наглядности на уроках, а так же трудные задачи свести к легким для понимания и решения.

Список литературы

1. «Занимательные задачи по информатике» , Москва, 2005

2. «Сценарии школьных праздников» Е. Владимирова, Ростов-на-Дону, 2001

3. Задачи для любознательных. , М., Просвещение, 1992г,

4. Внеклассная работа по математике, Саратов, Лицей, 2002г.

5. Удивительный мир чисел. , ., М., Просвещение, 1986г.,

6. Алгебра: учебник для 9 класса . , и др. под ред. ,- М.: Просвешение, 2008

Российская научно-социальная программа для молодежи и школьников

«Шаг в будущее»

ХV Районная научно-практическая конференция «Шаг в будущее»

Графы и их применение

Исследовательская работа

МБОУ «Шелеховский лицей», 10 класс

Руководитель: Копылова Н.П.

МБОУ «Шелеховский лицей»,

учитель математики.

Научный руководитель:

Постников Иван Викторович,

младший научный сотрудник

Института систем энергетики им. Л.А. Мелентьева

Сибирского отделения Российской академии наук

г. Шелехов - 2012

Введение, задачи, цель…………………………………………………………… 3

Основная часть……………………………………………………………………. 4

Заключение……………………………………………………………………..... 10

Список литературы…………………………………………………………….... 11

Введение.

Родоначальником теории графов считается Леонард Эйлер. В 1736 году в одном из своих писем он формулирует и предлагает решение задачи о семи кёнигсбергских мостах, ставшей впоследствии одной из классических задач теории графов. Толчок к развитию теория графов получила на рубеже XIX и XX столетий, когда резко возросло число работ в области топологии и комбинаторики, с которыми её связывают самые тесные узы родства. Как отдельная математическая дисциплина теория графов была впервые представлена в работе венгерского математика Кёнинга в 30-е годы XX столетия.

В последнее время графы и связанные с ними методы исследований пронизывают на разных уровнях едва ли не всю современную математику. Графы используются в теории планирования и управления, теории расписаний, социологии, математической лингвистике, экономике, биологии, медицине. Как более жизненный пример можно взять использование графов в геоинформационных системах. Существующие или вновь проектируемые дома, сооружения, кварталы и т. п. рассматриваются как вершины, а соединяющие их дороги, инженерные сети, линии электропередачи и т. п. - как рёбра. Применение различных вычислений, производимых на таком графе, позволяет, например, найти кратчайший объездной путь или ближайший продуктовый магазин, спланировать оптимальный маршрут. Теория графов быстро развивается, находит всё новые приложения и ждёт молодых исследователей.

    Дать определение графов и его составляющих

    Рассмотреть некоторые виды графов и их свойства

    Рассмотреть основные положения теории графов, а также теоремы, лежащие в основе данной теории с доказательством

    Решить ряд прикладных задач с помощью графов

    Определить области применения теории графов в окружающей действительности

Цель работы заключается в следующем: познакомиться с теорией графов и применить её в решении прикладных задач.

Основная часть.

Граф представляет собой непустое множество точек и множество отрезков, оба конца которых принадлежат заданному множеству точек. Обозначают граф буквой Г.

Точки иначе называют вершинами, отрезки – рёбрами графа.

Виды графов:

В общем смысле граф представляется как множество вершин, соединённых рёбрами. Графы бывают полными и неполными. Полный граф - это простой граф, каждая пара различных вершин которого смежна. Неполный граф – это граф, в котором хотя бы 2 вершины не смежны.

Граф, являющийся неполным, можно преобразовать в полный с теми же вершинами, добавив недостающие рёбра. Проведя недостающие рёбра, получим полный граф. Вершины графа Г и рёбра, которые добавлены, тоже образуют граф. Такой граф называют дополнением графа Г и обозначают его Г.

Дополнением графа Г называется граф Г с теми же вершинами, что и граф Г, и с теми и только с теми рёбрами, которые необходимо добавить графу Г, чтобы получился полный граф. Является ли граф полным или нет, это его характеристика в целом.

Рассмотрим теперь характеристики его вершин. Вершины, которые не принадлежат ни одному ребру, называются изолированными. Вершины в графе могут отличаться друг от друга степенью. Степенью вершины называется число рёбер графа, которым принадлежит эта вершина. Вершина называется нечётной, если её степень – число нечётное. Вершина называется четной, если её степень – четное число.

Имея даже общее представление о графе, иногда можно судить о степенях его вершин. Так, степень каждой вершины полного графа на единицу меньше числа его вершин. При этом некоторые закономерности, связанные со степенями вершин, присущи не только полным графам.

С вершинами графов связаны 4 теоремы, докажем их с помощью задач:

№1.Участники пионерского слёта, познакомившись, обменялись конвертами с адресами. Докажите, что:

1) всего было передано четное число конвертов;

2)число участников, обменявшихся конвертами нечетное число раз, четное.

Решение. Обозначим участников слёта А 1 , А 2 , А 3 …., А n – вершины графа, а ребра соединяют на рисунке пары вершин, изображающих ребят, которые обменялись конвертами:

1) Степень каждой вершины А j показывает количество конвертов, переданных участником А j своим знакомым, значит общее число переданных конвертов N равно сумме степеней всех вершин графа. N = степ. А 1 + степ. А 2 + … + степ. А n-1 + степ. А n , N = 2р (р – число ребер графа), то есть N – четное число. Из этого следует, что было передано четное число конвертов;

2) Мы доказали, что N – четное, а N = степ. А 1 + степ. А 2 + …. + степ. А n-1 + степ. А n , т.е N – количество участников. Мы знаем, что сумма нечетных слагаемых должна быть четной, а это возможно только в том случае, если число нечетных слагаемых четно. Значит, что число участников, которые обменялись конвертами нечетное число раз, четное.

В ходе решения задачи доказаны две теоремы.

    В графе сумма степеней всех его вершин – число чётное, равное удвоенному числу рёбер графа. ∑ степ. А j = степ. А 1 + степ. А 2 + … + степ. А n = 2р, где р – число ребер графа Г, n – число его вершин.

    Число нечётных вершин любого графа чётно.

№2. Девять шахматистов проводят турнир в один круг. Покажите, что в любой момент найдутся двое закончившие одинаковое число партий.

Решение. Переведем условие задачи на язык графов. Каждому из шахматистов поставим соответствующую ему вершину графа, соединим рёбрами попарно вершины, соответствующие шахматистам, которые уже сыграли между собой партию. Мы получили граф с девятью вершинами. Степень каждой вершины соответствует числу партий, сыгранных соответствующим игроком. Докажем, что в любом графе с девятью вершинами всегда есть хотя бы две вершины с одинаковой степенью.

Каждая вершина графа с девятью вершинами может иметь степень, равную 0, 1, 2, …, 7, 8. Предположим, что существует граф Г, все вершины которого имеют разную степень, т. е. каждое из чисел последовательности 0, 1, 2, …, 7, 8 является степенью одной и только одной из его вершин. Но этого не может быть. Действительно, если в графе есть вершина А со степенью 0, то в нем не найдется вершина В со степенью 8, так как эта вершина В должна быть соединена ребрами со всеми остальными вершинами графа, в том числе и с А. Иначе говоря, в графе с девятью вершинами не могут быть одновременно вершины степени 0 и 8. Следовательно, найдутся хотя бы две вершины, степени которых раны между собой.

Вернемся к задаче. Доказано, что в любой момент найдутся хотя бы двое, сыгравшие одинаковое число партий.

Решение этой задачи почти дословно повторяется в ходе доказательства следующей теоремы (только число 9 приходится заменить произвольным натуральным числом n ≥ 2).

    Во всяком графе с n вершинами, где n ≥ 2, всегда найдутся по меньшей мере две вершины с одинаковыми степенями.

№3. Девять человек проводят шахматный турнир в один круг. К некоторому моменту выясняется, что в точности двое сыграли одинаковое число партий. Докажите, что тогда либо в точности один участник еще не сыграл ни одной партии, либо в точности один сыграл все партии.

Решение. Условие задачи переведем на язык графов. Пусть вершины графа – игроки, а каждое ребро означает, что соответствующие игроки уже сыграли между собой партию. Из условия известно, что в точности две вершины имеют одинаковые степени. Требуется доказать, что в таком графе всегда найдется либо только одна изолированная, либо только одна вершина степени 8.

В общем случае у графа с девятью вершинами степень каждой вершины может принимать одно из девяти значений: 0, 1, …, 7, 8. Но у такого графа степени вершин принимают только восемь разных значений, т.к. ровно две вершины имеют одинаковую степень. Следовательно, обязательно либо 0, либо 8 будет значением степени одной из вершин.

Докажем, что в графах с девятью вершинами, из которых в точности две имеют одинаковую степень, не может быть двух вершин степени 0 или двух вершин степени 8.

Допустим, что все же найдется граф с девятью вершинами, в котором ровно две вершины изолированные, а все остальные имеют разные между собой степени. Тогда, если не рассматривать эти две изолированные вершины, останется граф с семью вершинами, степени которых не совпадают. Но такого графа не существует (теорема 3). Значит это предположение неверное.

Теперь допустим, что существует граф с девятью вершинами, в котором ровно две вершины имеют степень 8, а все остальные несовпадающие степени. Тогда в дополнении данного графа ровно две вершины будут иметь степень 0, а остальные попарно различные степени. Этого тоже не может быть (теорема 3), т. е. и второе предположение неверное.

Следовательно, у графа с девятью вершинами, из которых в точности две имеют одинаковую степень, всегда найдется либо одна изолированная вершина, либо одна вершина степени 8.

Вернемся к задаче. Как и требовалось доказать, среди рассмотренных девяти игроков либо только один еще не сыграл ни одной партии, либо только один сыграл уже все партии.

При решении этой задачи число 9 можно было заменить любым другим натуральным числом n › 2.

Из этой задачи можно вывести следующую теорему:

    Если в графе с n вершинами (n 2) в точности две вершины имеют одинаковую степень, то в этом графе всегда найдётся либо в точности одна вершина степени 0, либо в точности одна вершина степени n-1.

Эйлеров путь в графе - это путь, проходящий по всем рёбрам графа и притом только по одному разу.

№4. Как вы помните, охотник за мертвыми душами Павел Иванович Чичиков побывал у известных вам помещиков по одному разу у каждого. Он посещал их в следующем порядке: Манилова, Коробочку, Ноздрева, Собакевича, Плюшкина, Тентетникова, генерала Бетрищева, Петуха, Констанжогло, полковника Кошкарева. Найдена схема, на которой Чичиков набросал взаимное расположение имений и проселочных дорог, соединяющих их. Установите, какое имение кому принадлежит, если ни по одной из дорог Чичиков не проезжал более одного раза.

Решение. По схеме видно, что путешествие Чичиков начал с имения Е, а кончил имением О. Замечаем, что в имения В и С ведут только по две дороги, поэтому по этим дорогам Чичиков должен был проехать. Отметим их жирной линией. Определены участки маршрута, проходящие через А: АС и АВ. По дорогам АЕ, АК и АМ Чичиков не ездил. Перечеркнем их. Отметим жирной линией ЕD; перечеркнем DК. Перечеркнем МО и МН; отметим жирной линией МF; перечеркнем FO; отметим жирной линией FH, HK и КО. Найдем единственно возможный при данном условии маршрут.

Подведем первый итог: задача решена в ходе преобразования картинки. С рисунка остается только считать ответ: имение Е принадлежит Манилову, D – Коробочке, С – Ноздреву, А – Собакевичу, В – Плюшкину, М – Тентетникову, F – Бетрищеву, H – Петуху, K – Констанжогло, O - Кошкареву.

№5. У Ирины 5 подруг: Вера, Зоя, Марина, Полина и Светлана. Она решила двух из них пригласить в кино. Укажите все возможные варианты выбора подруг. Какова вероятность, что Ирина пойдёт в кино с Верой и Полиной?

Переведем условие задачи на язык графов. Пусть вершинами графов будут подруги. А соответствие подруг одного варианта ребрами. Каждую вершину обозначаем первой буквой имени подруг. Вера – В, Зоя – З, Марина – М, Полина – П, Света – С. Получился граф:

Некоторые варианты повторяются, и их можно исключить. Перечеркнем повторяющиеся ребра. Осталось 10 возможных вариантов, значит вероятность того, что Ирина пойдёт в кино с Верой и Полиной равна 0,1.

Представление о плоском графе

Граф называют плоским, если его можно нарисовать на плоскости так, чтобы никакие два его ребра не имели других общих точек, кроме их общей вершины.

Рисунок графа, в котором никакие два его ребра не пересекаются, если не считать точками пересечения общие вершины, называют плоским представлением графа.

Плоский граф Плоское представление графа

Представителем не плоского графа является полный граф с пятью вершинами. Все попытки изобразить плоское представление этого графа обернется крахом.

При изучении плоского представления графа вводится понятие грани.

Гранью в плоском представлении графа называется часть плоскости, ограниченная простым циклом и не содержащая внутри других циклов.

Рисунок

Грани () и () являются соседями, а грани () и () соседями не являются.

Ребро () является мостом, соединяющим циклы - перегородкой.

Простой цикл, ограничивающий грань - граница грани.

В качестве грани можно рассматривать и часть плоскости, расположенную «вне» плоского представления графа; она ограничена «изнутри» простым циклом и не содержит в себе других циклов. Эту часть плоскости называют «бесконечной» гранью.

Всякое представление графа либо не имеет бесконечной грани,

либо имеет только одну.

В плоском представлении дерева или леса бесконечной гранью является вся плоскость рисунка.

Формула Эйлера

Для всякого плоского представления связного плоского графа без перегородок число вершин (в), число ребер (р), и число граней с учетом бесконечной (г) связаны соотношением: в – р + г =2.

Предположим, что граф А –связный плоский граф без перегородок. Для его плоского произвольного представления определим алгебраическое значение суммы в – р + г. Затем, данный граф преобразуем в дерево, которое содержит все его вершины. Для этого удалим некоторые ребра графа, разрывая при этом поочередно все его простые циклы, но так, чтобы граф остался связным и без перегородок. Обратим внимание, что при данном удалении одного ребра уменьшается число граней на 1, т.к. при этом либо 2 цикла преобразуются в 1, либо один простой цикл просто пропадает. Из этого следует, что значение разности р – г при этом удалении остается неизменным. Те ребра, которые мы удаляем, выделены пунктиром.

В получившемся дереве число вершин обозначим – вд, ребер – рд, граней – гд. Отматим равенство р – г = рд – гд. В дереве одна грань, значит р – г = рд – 1. Изначально мы задали условие, что при удалении ребер число вершин не меняется, т.е. в = вд. Для дерева справедливо равенство вд – рд = 1. Отсюда следует рд = в – 1, т.е р – г = в – 2 или в – р + г = 2. Формула Эйлера - доказана.

Кёнигсберг

Издавна среди жителей Кёнигсберга была распространена такая загадка: как пройти по всем мостам (через реку Преголя), не проходя ни по одному из них дважды? Многие кёнигсбержцы пытались решить эту задачу как теоретически, так и практически, во время прогулок. Но никому это не удавалось, однако не удавалось и доказать, что это даже теоретически невозможно.

На упрощённой схеме части города (графе) мостам соответствуют линии (дуги графа), а частям города - точки соединения линий (вершины графа). В ходе рассуждений Эйлер пришёл к следующим выводам:

    Число нечётных вершин (вершин, к которым ведёт нечётное число рёбер) графа должно быть чётно. Не может существовать граф, который имел бы нечётное число нечётных вершин.

    Если все вершины графа чётные, то можно, не отрывая карандаша от бумаги, начертить граф, при этом можно начинать с любой вершины графа и завершить его в той же вершине.

    Граф с более чем двумя нечётными вершинами невозможно начертить одним росчерком.

Граф кёнигсбергских мостов имел четыре (зелёным) нечётные вершины (то есть все), следовательно, невозможно пройти по всем мостам, не проходя ни по одному из них дважды.

На карте старого Кёнигсберга был ещё один мост, появившийся чуть позже, и соединявший остров Ломзе с южной стороной. Своим появлением этот мост обязан самой задаче Эйлера-Канта.

Кайзер (император) Вильгельм славился своей прямотой, простотой мышления и солдатской «недалёкостью». Однажды, находясь на светском рауте, он чуть не стал жертвой шутки, которую с ним решили сыграть учёные умы, присутствующие на приёме. Они показали кайзеру карту Кёнигсберга, и попросили попробовать решить эту знаменитую задачу, которая по определению была нерешаемой. Ко всеобщему удивлению, Кайзер попросил перо и лист бумаги, сказав, что решит задачу за полторы минуты. Ошеломлённый немецкий истеблишмент не мог поверить своим ушам, но бумагу и чернила быстро нашли. Кайзер положил листок на стол, взял перо, и написал: «приказываю построить восьмой мост на острове Ломзе». Так в Кёнигсберге и появился новый мост, который так и назвали - мост Кайзера. А задачу с восемью мостами теперь мог решить даже ребёнок.

Заключение:

Актуальность работы заключается в том, что теория графов быстро развивается и находит все большее и большее применение. В этом направлении возможно открывать что то новое, т. к. теория графов содержит большое количество нерешённых проблем и пока не доказанных гипотез.

В ходе работы мы познакомили вас с начальным определением графов и его составляющих. Также с теорией графов. Мы показали на практике, как используется теория графов, и как с её помощью можно решать задачи.

Теория графов имеет свои преимущества в решении отдельных прикладных задач. А именно: наглядность, доступность, конкретность. Недостатком является то, что не всякую задачу можно подвести под теорию графов.

Список литературы:

1. «Графы и их применение» Л. Ю. Березина, издательство «Просвещение», Москва, 1979 г.

2. «Алгебра 9 класс» под редакцией С. А. Теляковского, издательство «Просвещение», Москва, 2010 г.

Научное общество учащихся

«Поиск»

40 Открытая областная научная конференция учащихся.

Секция математики .

Научная работа по теме:

«Графы» в моей родословной

Выполнила: Лобурец Виктория

ученица 7 класса

МОУ «Куломзинская СОШ»

Руководитель:

Лысенко Ольга Григорьевна

учитель математики

МОУ «Куломзинская СОШ»

Омск - 2008г.


  1. Актуальность и новизна

  2. Цель и задачи

II. ОСНОВНАЯ ЧАСТЬ
1.Понятие о графах

2.Свойства графов

3.Применение графов
III.Практическая часть
IV.Заключение
V.Литература

VI.Приложение

С О Д Е Р Ж А Н И Е

Введение………………………………………………………………..…….3

П.1.1. Актуальность и новизна……………………………………………..4

П.1.2.Цели и задачи…………………………………………………………4

Глава I.Теоретическаячасть …...………………………………….……….5

П.2.1.Понятие о графах……………………………………………………..5

Глава II. Практическая часть……………………………………………..11

П.2.1. «Графы» в моей родословной……………………………………..11

П.2.2.Решение логических задач методом графа………………………..11

Заключение…..……………………………………………………………...17

Литература……..……………………………………………………………..18

Приложения…………………………………………………………………..19

Введение
1.Актуальность и новизна
Теория графов находит применение в различных областях современной математики и ее многочисленных приложениях, в особенности это относится к экономике, технике, к управлению. Теория графов – важный раздел дискретной математики, практическая роль которой возросла за счёт развития различных АСУ и вычислительной техники дискретного действия, в теоретическом плане помимо связей с комбинаторикой и геометрией наметились сдвиги на стыке теории графов с алгеброй, математической логикой.

Исторически сложилось так, что теория графов зародилась в ходе решения головоломок двести с лишним лет назад. Очень долго она находилась в стороне от главных направлений исследований ученых. Толчок к развитию теория графов получила на рубеже XIX и XX столетий, когда резко возросло число работ в области топографии и комбинаторики, с которыми ее связывают самые тесные узы родства. Наиболее раннее упоминание о графах встречается в работе Л. Эйлера (1736г). В середине XIX века инженер-электрик Г. Кирхгоф разработал теорию деревьев для исследования электрических цепей, а математик А. Кэли в связи с описанием строения углеводородов решил перечислительные задачи для трех типов деревьев. Окончательно как математическая дисциплина теория графов оформилась в 1936г. после выхода монографии Д. Кёнига «Теория конечных и бесконечных графов».

В последнее время графы и связанные с ними методы исследований органически пронизывают на разных уровнях едва ли не всю современную математику. Теория графов находит массу приложений как в различных областях математики: алгебре, геометрии, топологии, комбинаторике, теории кодирования, исследовании операций, так и в физике, химии, лингвистике, экономике, психологии и других науках.

Решение многих математических задач упрощается, если удается использовать графы. Представление данных в виде графа придает им наглядность и простоту.

Новизной данной работы является доказательство эффективности метода графа при решении логических задач.

Главной целью школьного математического образования является развитие умственных способностей учеников. Нужен переход от информационно- объяснительной технологии к деятельно-развивающей, направленной на развитие личностных качеств каждого школьника. Важными должны стать не только усвоенные знания, но и сами способы усвоения и переработки учебной информации, развитие познавательной деятельности и творческого потенциала ученика. Большинство школьников свои приобретенные знания по математике вряд ли будут использовать в повседневной жизни, хотя многие из них закончат технические ВУЗы. Человек быстро забывает те знания, которыми постоянно не пользуется, но с ним навсегда остается логическое развитие. Именно этой актуальной теме развития личности учащегося посвящается моя работа.

Объектом исследования является процесс обучения учащихся методу «графа».

Гипотеза : по нашему предположению решение учащимися логических задач методом графа могут способствовать формированию и развитию логического мышления.

Исходя из гипотезы выдвинуты следующие цели и задачи исследования.

2. Цель и задачи.
Цель : использовать метод графа для решения логических задач, тем самым способствовать развитию логического мышления, рассмотреть решение задач с использованием понятия «Граф», проверить выполнение «Графов» на родословных.

Задачи:

1)Изучить научно- популярную литературу по данному вопросу.

2)Исследовать выполнение «Графов» для выяснения родственных отношений.

3)Проанализировать результаты проведенных экспериментов.

4)Изучение метода «графа», как метода решения логических задач.

Гл.I. Теоретическая часть

П.2.1. Понятие о графах

Слово «граф» в математике означает картинку, где нарисовано несколько точек, некоторые из которых соединены линиями. Математические графы с дворянским титулом «граф» связывает общее происхождение от латинского слова « графио » - пишу. Типичными графами являются схемы авиалиний, которые часто вывешивается в аэропортах, схемы метро, а на географических картах – изображение железных дорог (рис. 1). Выбранные точки графа называются его вершинами, а соединяющие их линии – ребрами.

Использует графы и дворянство. На рисунке 2 приведена часть генеалогического дерева знаменитого дворянского рода. Здесь его вершины – члены этого рода, а связывающие их отрезки – отношения родственности, ведущие от родителей к детям.

Слово «дерево» в теории графов означает граф, в котором нет циклов, то есть в котором нельзя из некоторой вершины пройти по нескольким различным ребрам и вернуться в ту же вершину. Генеалогическое дерево будет деревом и в смысле теории графов, если в этом семействе не было браков между родственниками.

Не трудно понять, что граф – дерево всегда можно изобразить так, чтобы его ребра не пересекались. Тем же свойством обладают графы, образованные вершинами и ребрами выпуклых многогранников. На рисунке 3 приведены графы, соответствующие пяти правильным многогранникам. В графе соответствующем тетраэдру, все четыре вершины попарно соединены ребрами.

Рассмотрим граф с пятью вершинами, попарно соединенными друг с другом (рис. 4). Здесь ребра графа пересекаются. Невозможно его изобразить так, чтобы пересечений не было, как невозможно выполнить намерения трех человек, описанных Льюсом Кэрроллом. Они жили в трех домиках, неподалеку от них находились три колодца: один с водой, другой с маслом, а третий с повидлом, и ходили к ним по тропинкам, изображенным на рисунке 5. Однажды эти люди перессорились и решили провести тропинки от своих домов к колодцам так, чтобы эти тропинки не пересекались. На рисунке 6 изображена очередная попытка проложить такие тропы.

Графы, изображенные на рисунках 4 и 5, как, оказалось, играют решающую роль при определении для каждого графа – является ли он плоским, то есть, может ли он быть изображен на плоскости без пересечения его ребер. Польский математик Г. Куратовский и академик

Л.С.Понтрягин независимо друг от друга доказали, что если граф не является плоским, то в нем «сидит» хотя бы один из графов, изображенных на рисунках 4 и 5, то есть «полный пятивершинник» или граф «домики – колодцы».

Графами являются блок – схемы программ для ЭВМ, сетевые графики строительства, где вершины – события, означающие окончания работ на некотором участке, а ребра, связывающие эти вершины, - работы, которые возможно начать по совершении одного события и необходимо выполнить для совершения следующего.

Если на ребрах графа нанесены стрелочки, указывающие направление ребер, то такой граф называют направленным.

Стрелка от одной работы к другой на графе, изображенном на рис. 7, означает последовательность выполнения работ. Нельзя начинать монтаж стен, не закончив строить фундамент, чтобы приступить к отделке, нужно иметь на этажах воду и т. д.

рис.7.

Около вершин графа указаны числа – продолжительность в днях соответствующей работы. Теперь мы можем узнать наименьшую возможную продолжительность строительства. Для этого из всех путей по графу в направлении стрелок нужно выбрать путь, у которого сумма чисел при вершинах наибольшая. Он называется критическим путем (на рис. 7 он выделен коричневым цветом). В нашем случае получаем 170 дней. А если сократить время прокладки электросети с 40 до 10 дней, то и время строительства тоже сократится на 30 дней? Нет, в этом случае критический путь станет проходить не через эту вершину, а через вершины, соответствующие строительству котлована, укладке фундамента и т. д. И общее время строительства составит 160 дней, т. е. срок сократиться лишь на 10 дней.

На рис.8 изображена схема дорог между селами М, А, Б, В, Г.

Здесь каждые две вершины соединены между собой ребром. Такой граф называется полным. Числа на рисунке указывают расстояния между селами по этим дорогам. Пусть в селе М находится почта и почтальон должен развезти письма по остальным четырем селам. Существует много различных маршрутов поездки. Как из них выбрать наикратчайший? Проще всего проанализировать все варианты. Сделать это поможет новый граф (внизу), на котором легко увидеть возможные маршруты. Вершина М вверху – начало маршрутов. Из нее можно начать движение четырьмя различными способами: в А, в Б, в В, в Г. После посещения одного из сел остается три возможности продолжения маршрута, потом две, потом дорога в последнее село и вновь в М. Всего 4 ×3× 2× 1 = 24 способа.

Расставим вдоль ребер графа цифры, обозначающие расстояния между селами, а в конце каждого маршрута напишем сумму этих расстояний по маршруту. Из полученных 24 чисел наименьшими являются два числа по 28км, соответствующие маршрутам М-В-Б-А-Г-М и М-Г-А-Б-В-М. Это один и тот же путь, но пройденный в разных направлениях. Заметим, что граф на рис. 8 тоже можно сделать направленным, указав направление сверху вниз на каждом из ребер, что соответствовало бы направлению движения почтальона. Подобные задачи часто возникают при нахождении лучших вариантов развозки товаров по магазинам, стройматериалов по стройкам.

Графы часто используют для решения логических проблем, связанных с перебором вариантов. Для примера рассмотрим такую задачу. В ведре 8 л воды, и имеется две кастрюли емкостью 5 и 3 л. требуется отлить в пятилитровую кастрюлю 4 л воды и оставить в ведре 4 л, т. е. разлить воду поровну в ведро и большую кастрюлю. Решение: Ситуацию в каждый момент можно описать тремя числами, где А-количество литров воды в ведре, Б - в большой кастрюле, В - в меньшей. В начальный момент ситуация описывалась тройкой чисел (8, 0, 0), от нее мы можем перейти в одну из двух ситуаций: (3, 5, 0), если наполним водой большую кастрюлю, или (5, 0, 3), если наполним меньшую кастрюлю. В результате получаем два решения: одно в 7 ходов, другое в 8 ходов.

Подобным образом можно составить граф любой позиционной игры: шахмат, шашек, «крестиков – ноликов», где позиции станут вершинами, а направленные отрезки между ними будут означать, что одним ходом можно перейти от одной позиции к другой, по направлению стрелки. Однако для шахмат и шашек такой граф будет очень большим, поскольку различные позиции в этих играх исчисляются миллионами. А вот для игры «крестики – нолики» на доске 3×3 соответствующий граф нарисовать не так уж трудно, хотя и он будет содержать несколько десятков (но не миллионов) вершин. В терминах графов легко формулируется и решается задача о назначении на должности. А именно: если имеется несколько вакантных должностей и группа лиц, желающих их занять, причем каждый из претендентов имеет квалификацию для нескольких должностей, то при каких условиях каждый из претендентов сможет получить работу по одной из своих специальностей?

Свойства графов не зависят от того, соединены вершины отрезками или кривыми линиями. Это дает возможность изучения их свойств с помощью одной из молодых наук – топологии, хотя сами задачи теории графов являются типичными задачами комбинаторики.

Гл.II. Практическая часть.
П.2.1. «Графы» в моей родословной.
Методы работы:

Сравнение и анализ результатов эксперимента.

Методика работы:

Для проведения исследований были выбраны:

А) Родословная моей семьи, архивы данных, свидетельства о рождении.

Б) Родословная князей Голицыных, архивы данных.

Я провела исследование, результаты исследования поместила в схемы и проанализировала их.

Методика 1.
Цель: проверить выполнение ’’Графов” на своей родословной.

Результаты: схема 1(см. приложение 1).


Методика 2.
Цель: проверить выполнение ’’Графов’’ на родословной князей Голицыных.

Результат: схема 2 (см. приложение 2).

Вывод: я заметила, что родословная – типичный граф.
П. 2.2. Решение логических задач методом графа
В течение всех лет обучения в школе мы много решаем разнообразных задач, в том числе и логических: задачи занимательного характера, головоломки, анаграммы, ребусы и т.п. Чтобы успешно решать задачи такого вида, надо уметь выделять их общие признаки, подмечать закономерности, выдвигать гипотезы, проверять их, строить цепочки рассуждений, делать выводы. Логические задачи от обычных отличаются тем, что не требуют вычислений, а решаются с помощью рассуждений. Можно сказать, что логическая задача – это особая информация, которую не только нужно обработать в соответствии с заданным условием, но и хочется это сделать. Логика помогает усваивать знания осознанно, с пониманием, т.е. не формально; создаёт возможность лучшего взаимопонимания. Логика – это искусство рассуждать, умение делать правильные выводы. Это не всегда легко, потому, что очень часто необходимая информация «замаскирована», представлена неявно, и надо уметь её извлечь. Как известно, видение рождает мышление. Возникает проблема: как установить логические связи между разрозненными фактами и как оформить в виде единой целой. Видеть ход доказательства и решения задач позволяет метод граф - схем, который делает доказательство более наглядным и позволяет кратко и точно изложить доказательства теорем и решения задач.

Пример 1.1 . Красный, синий, желтый и зеленый карандаши лежат в четырех коробках по одному. Цвет карандаша отличается от цвета коробки. Известно, что зеленый карандаш лежит в синей коробке, а красный не лежит в желтой. В какой коробке лежит каждый карандаш?

Решение. Обозначим точками карандаши и коробки. Сплошная линия будет обозначать, что карандаш лежит в соответствующей коробке, а пунктирная, что не лежит. Тогда с учетом задачи имеем G1 (рис. 1).

Рис.1
Далее достраиваем граф по следующему правилу: поскольку в коробке может лежать ровно один карандаш, то из каждой точки должны выходить одна сплошная линия и три пунктирные. Получается граф G2 , дающий решение задачи.

Пример 1.2. Беседуют трое друзей: Белокуров, Чернов и Рыжов. Брюнет сказал Белокурову: «Любопытно, что один из нас белокурый, другой брюнет, третий рыжий, но ни у кого цвет волос не соответствует фамилии». Какой цвет волос имеет каждый из друзей?

Решение. Построим граф отношения, заданного в условии задачи. Для этого, прежде всего, выделим множество фамилий М и множество цветов волос К, элементы которых будем обозначать точками. Точки множества М назовем буквами Б, Ч, Р (Белокуров, Чернов и Рыжов); точки второго множества – б, бр, р (белокурый, брюнет, рыжий). Если точке из одного множества соответствует точка из другого, мы их соединим сплошной линией, а если не соответствует – штриховой. Условие задачи указывает лишь на несоответствия, поэтому, вначале должен возникнуть граф, изображенный на рисунке 2.

Рис.2


Из условия задачи следует, что для каждой точки из множества М, существует одна и только одна точка из множеств К, которая соответствует первой и, наоборот, каждой точке из множества К соответствует одна и только одна точка из множества М. Задача сводится к тому, чтобы найти это единственно возможное соответствие между элементами множеств М и К, т. е. к нахождению трех сплошных линий, соединяющих соответствующие точки множеств.

Принцип решения задачи прост. Если какая-то точка оказывается соединенной с двумя точками другого множества штриховыми линиями, то с его третьей точкой ее необходимо соединить сплошной линией. Поэтому граф на рисунке 2 дополняется сплошными линиями, соединяющими точки Б и р , Р и бр (рис. 3).

Рис.3
Далее остается соединить сплошной линией точку Ч и точку б , так как точка Ч соединена с точкой бр штриховой линией, а точка р уже «занята» (рис. 4).

Рис. 4


Таким образом, на графе этого рисунка автоматически прочитываем ответ: Белокуров - рыжий, Чернов - белокурый, Рыжов – брюнет.

В следующей задаче применение графов помогает обнаружить наличие двух решений.

Пример 1.3. Маша, Лида, Женя и Катя умеют играть на разных инструментах (виолончели, рояле, гитаре и скрипке), но каждая только на одном. Они же владеют разными иностранными языками (английским, французским, немецким и испанским), но каждая только одним. Известно, что:

1. девушка, которая играет на гитаре, говорит по-испански;

2. Лида не играет ни на скрипке, ни на виолончели и не знает английского языка;

3. Маша не играет ни на скрипке, ни на виолончели и не знает английского языка;

4. девушка, которая говорит по-немецки, не играет на виолончели;

5. Женя знает французский язык, но не играет на скрипке.

Кто на каком инструменте играет и какой иностранный язык знает?

Решение. Условию задачи соответствует граф, изображенный на рисунке 5.

Рис. 5


Проведем последовательно следующие сплошные отрезки: КС, ВЖ, ВФ, АК (рис.6).

Рис. 6

Тем самым образуются два «сплошных» треугольника ЖВФ и КСА. Проводим еще сплошной отрезок РН. Теперь убеждаемся, что условия задачи не обеспечивают однозначности выбора третьей точки для каждой из пар РН и ГИ. Возможны следующие варианты «сплошных» треугольников: МГИ и ЛРН или ЛГИ и МРН. Таким образом, задача имеет два решения.

В некоторых случаях решение комбинаторных задач может быть затруднено. Облегчить процесс нахождения можно, научившись пользоваться такими средствами организации перебора как таблицы и графы. Они позволяют расчленить ход рассуждений, четко провести перебор, не упустив каких-либо возможностей.

Сначала как наиболее простым средством организации перебора нужно познакомится с таблицами.

Для примера рассмотрим такую задачу:

Имеются два сосуда вместимостью 3л и 5л. Как с помощью этих сосудов налить из водопроводного крана 4л воды?

Начнем с конца. Как в результате может получиться 4л? – Из 5-литрового сосуда отлить 1л. Как это сделать? – Надо в 3-литровом сосуде иметь ровно 2л. Как их получить? – Из 5-литрового сосуда отлить 3 литра. Теперь запишем решение задачи сначала в виде таблицы.

Поиск решения можно начать с действия 3+1, что привело бы к решению, записанному в следующей таблице.

Из чисел 3 и 5 можно составить выражения, имеющие значение 4:

5-3+5-3=4 и 3+3-5+3=4

Несложно убедиться, что полученные выражения соответствуют найденным выше решениям.

Второе средство организации при решении комбинаторных задач, которое можно использовать – графы.

Приведу пример решения с применением граф - дерева для решения комбинаторной задачи.

Например, требуется решить задачу: «Однажды встретились пятеро друзей. Каждый здороваясь, пожал каждому руку. Сколько рукопожатий было сделано».

Сначала выясняется, как нужно обозначить каждого человека. Рассматривая разные предложения, приходят к тому, что быстрее и удобнее изображать людей точками. Точки нужно расположить примерно по кругу, нарисовать их цветным карандашом, чтобы записи были понятными и наглядными. От двух точек навстречу друг к другу проводят черточки – «руки», которые встречаясь образуют одну линию. Так приходят к символическому изображению рукопожатия. Сначала составляются все рукопожатия одного человека (точка соединяется линиями со всеми остальными). Потом переходят к другому человеку. Проведенные лини помогают увидеть, с кем он уже поздоровался, а с кем – нет. Составляются недостающие рукопожатия (эти линии лучше проводить другим цветом, так как потом лучше будет подсчитать общее число рукопожатий). И так действуют до тех пор, пока все не поздороваются друг с другом. По получившему графу подсчитать число рукопожатий (их всего 10).

Следующая задача :

«Сколько двухзначных чисел можно составить, используя цифры 1,2,3,4?».

Решение. Число 12: надо показать, что начинает с цифры 1, а оканчивается цифрой 2. петля появляется при обозначении, например, числа 11: стрелка должна начинаться и заканчиваться на одной и той же цифре. Открыв для себя первых задачах эти условные обозначения (точки, лини, стрелки, петли), я стала применять их при решении различных задач, составляя графы того или иного вида (рис 2).

ответ:16 чисел.

Приведу некоторые примеры:

1.В финал турнира по шашкам вышли два российских игрока, два немецких и два американских. Сколько партий будет в финале, если каждый играет с каждым по одному разу и представители одной страны между собой не играют? (рис.3.).


н

Н



В финале будет сыграно 4×6 = 24партии.
2.В вазе лежали конфеты четырех сортов. Каждый ребенок взял две конфеты. И у всех оказались отличающие наборы конфет. Сколько могло быть детей? (граф на рис.4).

Из данного графа становится понятно, что возможно 6 отличающихся наборов конфет, а следовательно, детей могло быть 6.


Вывод: Графовые задачи обладают рядом достоинств, позволяющих использовать их для развития соображения и улучшения логического мышления детей, начиная с детского сада и заканчивая старшими классами средней школы. Язык графов прост, понятен и нагляден. Графовые задачи допускают изложение в занимательной, игровой форме. С другой стороны, графовые задачи труднее поддаются формализации, чем, например, школьные задачи по алгебре, для их решения часто не требуется глубоких знаний, а следует применить смекалку.

С их помощью можно обеспечивать учеников новыми знаниями, которые облегчат ему в дальнейшем изучение информатики; повышать логическое и умственное развитие школьников; приучать их к самостоятельной работе; развивать их воображение и повышать культуру общения.

При решении комбинаторных задач сохраняется тесная связь мышления с практическими действиями, обеспечивается постепенный переход действиям в уме, способствует развитию качества мышления, как вариативность.

ЗАКЛЮЧЕНИЕ
Выполняя эту работу, я изучила один из интереснейших вопросов теории графов, я рассмотрела математические графы, области их применения, решила несколько задач с помощью графов. Научилась использовать «графы» для выяснения родственных отношений. Изучила метод «графов», как один из методов решения логических задач.

Теория графов не изучается в школьном курсе, но с задачами по дискретной математике приходится сталкиваться довольно часто на различных математических олимпиадах и конкурсах. Графы достаточно широко применяются в математике, технике, экономике, управлении. Знание основ теории графов необходимо в различных областях, связанных с управлением производством, бизнесом (например, сетевой график строительства, графики доставки почты), и познакомившись с элементами теории графов, я надеюсь, что смогу успешно решать не только олимпиадные задачи.

В дальнейшем я собираюсь продолжить изучение теории графов, потому что этот раздел математики показался мне интересным и полезным. Кроме того, работая над исследовательской работой, я освоила работу на компьютере в текстовом редакторе Word и Рower Point. Я считаю, что задачи исследовательской работы выполнила.

Литература.


  1. Березина Л.Ю. Графы и их применение. – М., 1979.

  2. Виленкин Н.Я. Математика. – М.: Русское слово, 1997.

  3. Гарднер М. «Математические досуги» М.: Мир,1972

  4. Гнеденко Б.В. Курс теории вероятностей. - М.: УРСС, 2005.

  5. Коннова Л.П. Знакомтесь, графы. – Самара, 2001.

  6. Лыкова И.А. Логические задачки –М.: Карапуз, 2000.

  7. Савин А.В. Энциклопедический словарь юного математика. 2-е изд., - М.: Педагогика, 1989

  8. Шадринова В.Д. Познавательные процессы и способности в обучении – М.: Просвещение, 1980

  9. Чистяков В. П. Курс теории вероятностей. М., Просвещение, 1982.

Приложения.
Приложение 1.
Лобурец Виктория Владимировна 1994 гр.

Лобурец В. Н

1962
.

Орловская Л. В.


Чтобы посмотреть презентацию с картинками, оформлением и слайдами, скачайте ее файл и откройте в PowerPoint на своем компьютере.
Текстовое содержимое слайдов презентации:
Исследовательская работаГрафы вокруг нас.Выполнила: Абросимова Елена ученица 8 «А» класса МАОУ Домодедовской СОШ №2Руководитель: Генкина Н.В.

Выяснить особенности применения теории графов при решении математических, логических и практических задач.Цель исследовательской работы:
Изучить теорию графов;Решить задачи с помощью графов;Рассмотреть применение теории графов в различных областях науки;Создать с помощью теории графов маршруты и задачи;Выяснить наличие знаний о графах у учеников 7 классов.Задачи:

Граф-?
Леонард Эйлер Первый кто развил теорию графов, был немецкий и русский математик Леонард Эйлер (1707-1783). Нет науки, которая не была бы связана с математикой

Задача о Кёнигсбергских мостах
Представим задачу в виде графа где острова и берега - точки, а мосты -ребра.
Задачи. №1Мальчики 10«Б» класса Андрей, Витя, Сережа, Валера, Дима при встрече обменялись рукопожатиями (каждый пожал руку каждому по одному разу). Сколько всего рукопожатий было сделано?
№2 Задача о перестановке четырех коней. Напишите алгоритм перестановки жёлтых коней на место красных коней и красных коней на место жёлтых коней.
Теория графов в различных областях науки. Теория графов в различных областях науки. Собственные разработки Маршрут по домодедовским церквям.
Маршрут автобуса для пенсионеров.
Задача №1.
Ответ:
Задача №2.
Маршрут по Дворцовым Питерским мостам. Исследование:
«Графы и их применение» Л. Ю. Березина.«Знаменитейший ученый муж» изд. Калейдоскоп «Кванта» «Леонард Эйлер» В. Тихомиров«Топология графов» В. Болтянский«Современная школьная энциклопедия. Математика. Геометрия» изд. «Москва Олма Медиа Групп»Граф (математика) - Википедия ru.wikipedia.orgГрафы. Применение графов к решению задач festival.1september.ruГРАФЫ sernam.ruГрафы | Социальная сеть работников образования nsportal.ruГрафы / Математика studzona.comГрафы и их применение в решении задач sch216.narod.ruГрафы 0zd.ruИсточники: Спасибо за внимание.



Муниципальное автономное общеобразовательное учреждение
Домодедовская средняя общеобразовательная школа №2
Исследовательская работа.
«Графы вокруг нас».
Выполнила: Абросимова Е. С. ученица 8 «А» класса.
Руководитель: учитель математики Генкина Н.В.
2014 год.
План:
Вступление.
Гипотеза.
Актуальность темы.
Теория.
Практическое приложение.
Собственные разработки.
Исследование.
Заключение.
Вступление:
Теория графы заинтересовала меня своей возможностью помогать в решении различных головоломок, математических и логических задач. Так как я готовилась к математической олимпиаде, то теория графов была неотъемлемой частью в моей подготовке. Углубившись в эту тему, я решила понять, где ещё встречаются графы в нашей жизни.
Гипотеза:
Изучение теории графов может помочь в решении различных головоломок, математических и логических задач.
Актуальность темы:
Теория графов в настоящее время является интенсивно развивающимся разделом математики. Это объясняется тем, что в виде графовых моделей описываются многие объекты и ситуации, что очень важно для нормального функционирования общественной жизни. Именно этот фактор определяет актуальность их более подробного изучения. Поэтому тематика данной работы достаточно актуальна.
Теория:
Теория графов - раздел математики, изучающий свойства графов. В математической теории граф - это совокупность непустого множества вершин и наборов пар вершин (связей между вершинами). Математические графы с дворянским титулом «граф» связывает общее происхождение от латинского слова «графио» - пишу. Граф называется полным, если каждые две различные вершины его соединены одним и только одним ребром.
Объекты представляются как вершины, или узлы графа, а связи - как дуги, или рёбра. Для разных областей применения виды графов могут различаться направленностью, ограничениями на количество связей и дополнительными данными о вершинах или рёбрах. Степенью вершины называется число ребер графа, которым принадлежит эта вершина.
При изображении графов на рисунках чаще всего используется следующая система обозначений: вершины графа изображаются точками или, при конкретизации смысла вершины, прямоугольниками, овалами и др., где внутри фигуры раскрывается смысл вершины (графы блок-схем алгоритмов). Если между вершинами существует ребро, то соответствующие точки (фигуры) соединяются отрезком или дугой. В случае ориентированного графа дуги заменяют стрелками, или явно указывают направленность ребра. Есть и планарный граф - это граф, который можно изобразить на рисунке без пересечения. В том случае, если граф не содержит циклов (путей однократного обхода рёбер и вершин с возвратом в исходную вершину), его принято называть «деревом». Важные виды деревьев в теории графов - бинарные деревья, где каждая вершина имеет одно входящее ребро и ровно два выходящих, или является конечной - не имеющей выходящих рёбер. Основные понятия теории графов. Маршрут графа – последовательность чередующихся вершин и ребер. Замкнутый маршрут – маршрут, в котором начальная и конечная вершины совпадают. Простая цепь – маршрут, в котором все ребра и вершины различны. Связный граф – граф, в котором каждая вершина достижима из любой другой.
Терминология теории графов поныне не определена строго.
Первый кто развил теорию графов, был немецкий и русский математик Леонард Эйлер (1707-1783). Который известен своей старинной задачей о кёнигсбергских мостах, которую решил в 1736 году. Эйлер математик и механик, внёсший фундаментальный вклад в развитие этих наук. Вся жизнь Л. Эйлера была связана с научной деятельностью и не только связанной с графами. Он говорил: «Нет науки, которая не была бы связана с математикой». Почти полжизни провёл в России, где внёс существенный вклад в становление российской науки. В дальнейшем над графами работали Кениг (1774-1833), Гамильтон (1805- 1865), из современных математиков - К. Берж, О. Оре, А. Зыков.

Задача о кёнигсбергских мостах.
Бывший Кенигсберг (ныне Калининград) расположен на реке Прегель. В пределах города река омывает два острова. С берегов на острова были перекинуты мосты. Старые мосты не сохранились, но осталась карта города, где они изображены. Кенигсбергцы предлагали приезжим следующую задачу: пройти по всем мостам и вернуться в начальный пункт, причём на каждом мосту следовало побывать только один раз.
Этой карте можно поставить в соответствие неориентированный граф - это упорядоченная пара, для которой выполнены определенные условия, где вершинами будут являться части города, а рёбрами - мосты, соединяющие эти части между собой. Эйлер доказал, что задача не имеет решения. В Калининграде (Кенигсберге) помнят о задаче Эйлера. И именно поэтому, граф, который можно нарисовать, не отрывая карандаша от бумаги, называется эйлеровым, а такие контуры образуют так называемые уникурсальные графы.
Теорема: для уникурсального графа число вершин нечётного индекса равно нулю или двум.
Доказательство: Действительно, если граф уникурсален, то у него есть начало и конец обхода. Остальные вершины имеют чётный индекс, так как с каждым входом в такую вершину есть и выход. Если начало и конец не совпадают, то они являются единственными вершинами нечётного индекса. У начала выходов на один больше, чем входов, а у конца входов на один больше, чем выходов. Если начало совпадает с концом, то вершин с нечётным индексом нет. ЧТД.

Свойства графа (Эйлер): Если все вершины графа четные, то можно одним росчерком (т.е. не отрывая карандаша от бумаги и не проводя дважды по одной и той же линии) начертить граф. При этом движение можно начать с любой вершины и окончить в той же вершине. Граф с двумя нечетными вершинами тоже можно начертить одним росчерком. Движение надо начинать от любой нечетной вершины, а заканчивать на другой нечетной вершине. Граф с более чем двумя нечетными вершинами невозможно начертить одним росчерком.
Практическое приложение:
Графы – замечательные математические объекты, с их помощью можно решать очень много различных, внешне не похожих друг на друга задач.
В спортивном зале собрались Витя, Коля, Петя, Сережа и Максим. Каждый из мальчиков знаком только с двумя другими. Кто с кем знаком.
Решение: Построим граф.
Ответ: Витя знаком с Колей и Сережей, Сережа с Витей и Петей, Петя с Сережей и Максимом, Максим с Петей и Колей, Коля с Петей и Максимом.
Мальчики 10 «б» класса Андрей, Витя, Сережа, Валера, Дима при встрече обменялись рукопожатиями (каждый пожал руку другому по одному разу). Сколько всего рукопожатий было сделано? Решение:Пусть каждому из пяти молодых людей соответствует определенная точка на плоскости, названная первой буквой его имени, а производимому рукопожатию - отрезок или часть кривой, соединяющая конкретные точки - имена.
Если подсчитать число ребер графа, изображенного на рисунке, то это число и будет равно количеству совершенных рукопожатий между пятью молодыми людьми. Их 10.
Задача о перестановке четырех коней. Напишите алгоритм перестановки жёлтых коней на место красных коней и красных коней на место жёлтых коней. Конь перемещается за один ход буквой «Г» в горизонтальном, либо в вертикальном положении. Конь может перепрыгивать через стоящие на его пути другие фигуры, но может ходить только на свободные поля.
Решение. Каждой клетке доски сопоставим точку на плоскости, и если из одной клетки можно попасть в другую ходом коня, то соединим соответствующие точки линией, получим граф.
Написание алгоритма перестановки коней становится очевидным.

Усадьба Хакенбуш.
Эту замечательную игру придумал математик Джон Конвей. Для игры используется картинка с "усадьбой Хакенбуш" (смотрите ниже). За один ход игрок стирает один любой отрезок картинки, ограниченный точками или одной точкой, если отрезок это петля. Если после удаление этой линии, часть линий оказывается не связанной с рамкой, то она удалятся тоже. На рисунке пример, где удалятся линия, выделенная зеленым цветом, и вместе с ней удаляются линии дыма, выделенные красным. Игрок, который удаляет последний элемент картинки выигрывает.

Задача:
Попытайтесь нарисовать одним росчерком каждую из следующих семи фигур. Помните требования: начертить все линии заданной фигуры, не отрывая пера от бумаги, не делая никаких лишних штрихов и не проводя дважды ни одной линии.

Задача:
Можно ли обойти все данные комнаты, пройдя через каждую дверь ровно один раз и выйти на улицу через комнату 1 или 10? С какой комнаты надо начинать?

Решение:
1) Пусть комнаты – вершины графа, а двери – ребра. Проверим степени вершин:

2)Только две вершины имеют нечетную степень. Начать движение можно из комнаты 10, а закончить в комнате 8, либо наоборот.
3) Но, чтобы выйти на улицу (из комнаты 10), надо начинать из комнаты 8. В этом случае пройдём все двери один раз и попадём в комнату 10, но окажемся внутри комнаты, а не снаружи:

Аналогично рассуждая, можно решать любые задачи с лабиринтами, входами и выходами, подземельями и т.п.
Теория графов стала доступным средством решения вопросов, относящихся к широкому кругу проблем:
в исследовании автоматов и логических цепей,

В химии и биологии,

В природоведении,

В проектировании интегральных схем и схем управления,

В истории.

Собственные разработки:
Изучив материал, я решила самостоятельно, с помощью графа создать экскурсионный маршрут для школьного автобуса по домодедовским церквям. Вот что у меня получилось. Одной из задач создания такого маршрута было условие, что по одной дороге нельзя проезжать дважды. Это условие можно выполнить, опираясь на теорему Эйлера, т.е построить граф, содержащий не более 2-х нечетных вершин.

Маршрут социального автобуса для пенсионеров. Задача этого маршрута, что по одной дороге нельзя проезжать дважды. Это условие можно выполнить, опираясь на теорему Эйлера, т.е построить граф, содержащий не более 2-х нечетных вершин.

Также меня вдохновило решение интересных задач, и поэтому я создала свои собственные.
Задача:
Шел урок. Во время урока Маша передала записку Кате. Как составить граф, чтобы записка дошла до Полины. При условиях, что нельзя передавать записку по диагонали, и чтобы граф не пересекался с маршрутом (графом) учительницы.

Задача:
На луг пастух вывел 8 овец. Через некоторое время появился волк, который прикинулся овцой. Как пастуху выявить волка, если каждая овца знакома лишь с двумя другими.
Ответ:

Задача:
Как обойти Дворцовые мосты ни проходя ни по одному мосту дважды. Одной из задач создания такого маршрута было условие, что по одной дороге нельзя проезжать дважды. Это условие можно выполнить, опираясь на теорему Эйлера.

После составления карт и задач, я решила провести исследование и понять, как другие люди пользуются наукой графы.
Исследование о наличии знаний у учеников 7 классов по теории графов:
ВОПРОСЫ:
Играли ли вы в игру нарисовать фигуру по цифрам?
lefttop00
Играли ли вы в игру нарисовать одним росчерком конверт?

Вы делали это, основываясь на каких-то научных знаниях или методом проб и ошибок?
А знаете ли вы, что существует целая наука «графы», которая помогает решить вышеперечисленные задачи?
Хотели бы вы поближе познакомиться с теорией графов?

Заключение:
После того, как я провела эту исследовательскую работу, я изучила более подробно теорию графов, доказала свою гипотезу: «Изучение теории графов может помочь в решении различных головоломок, математических и логических задач», рассмотрела теорию графов в разных областях науки и составила свой собственный маршрут и свои три задачи. Но делая эту работу, я заметила, что многие люди фактически пользуются этой наукой, хотя не имеют о ней ни малейшего представления. Я изучила многое, но еще есть над чем работать.
Список литературы
Л. Ю. Березина «Графы и их применение: Популярная книга для школьников и преподавателей». Изд. Стереотип.- М.: Книжный дом «ЛИБРОКОМ», 2013.- 152 с.
«Знаменитейший ученый муж». Изд. Калейдоскоп «Кванта»
В. Тихомиров «Леонард Эйлер» (К 300-летию со дня рождения). Изд. «Квант»
В. Болтянский «Топология графов». Изд. «Квант»
«Современная школьная энциклопедия. Математика. Геометрия». Под ред. А.А.Кузнецова и М.В. Рыжакова. Изд. «М.: Олма Медиа Групп», 2010. – 816 с.
Цифровые ресурсы:
wikipedia.orgfestival.1september.rusernam.runsportal.rustudzona.comsch216.narod.ru0zd.ru


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении