Снова в школу

Уравнение состояния идеального. Давление газа.Уравнение состояния идеального газа (уравнение Менделеева-Клапейрона).Изопроцессы. Основное уравнение молекулярно-кинетической теории идеальных газов

Возьмем некоторое количество газа определенного химического состава, например азота, кислорода или воздуха, и заключим его в сосуд, объем которого можно изменять по своему усмотрению. Будем считать, что у нас имеется манометр, т. е. прибор для измерения давления газа, и термометр для измерения его температуры. Опыт показывает, что перечисленные макроскопические параметры полностью характеризуют газ как термодинамическую систему в том случае, когда этот газ состоит из нейтральных молекул, не обладающих собственным дипольным моментом.

В состоянии термодинамического равновесия не все эти параметры независимы, они связаны между собой уравнением состояния. Чтобы получить это уравнение, нужно воспользоваться

установленными на опыте закономерностями поведения газа при изменении каких-либо внешних параметров.

Газ в сосуде - простая термодинамическая система. Примем сначала, что ни количество газа, ни его химический состав во время опыта не меняются, так что речь пойдет только о трех макроскопических параметрах - давлении объеме V и температуре Для установления связывающих эти параметры закономерностей удобно зафиксировать значение одного из параметров и следить за изменениями двух других. Будем считать, что вызываемые нами изменения в газе происходят настолько медленно, что в любой момент времени макроскопические параметры характеризующие весь газ в состоянии термодинамического равновесия, имеют вполне определенные значения.

Изопроцессы. Как уже отмечалось, из любого неравновесного состояния термодинамическая система приходит в состояние равновесия за некоторое время - время релаксации. Чтобы при происходящих в системе изменениях макроскопические параметры имели вполне определенные значения, характерное время этих изменений должно быть много больше времени релаксации. Это условие накладывает ограничения на допустимую скорость процесса в газе, при котором сохраняют смысл его макроскопические параметры.

Процессы, протекающие при неизменном значении одного из параметров, принято называть изопроцессами. Так, процесс, происходящий при постоянной температуре, называется изотермическим, при постоянном объеме - изохорическим (изохорным), при постоянном давлении - изобарическим (изобарным).

Закон Бойля-Мариотта. Исторически первым в газе был экспериментально изучен изотермический процесс. Английский физик Р. Бойль и независимо от него французский физик Э. Мариотт установили закон изменения объема при изменении давления: для данного количества любого газа при неизменной температуре объем обратно пропорционален давлению. Обычно закон Бойля-Мариотта записывают в виде

Для поддержания постоянной температуры исследуемый газ должен находиться в хорошем тепловом контакте с окружающей средой, имеющей неизменную температуру. В этом случае говорят, что газ находится в контакте с термостатом - большим тепловым резервуаром, на состояние которого не влияют любые изменения, происходящие с исследуемым газом.

Закон Бойля-Мариотта хорошо выполняется для всех газов и их смесей в широком диапазоне температур и давлений. Отклонения от

этого закона становятся существенными лишь при давлениях, в несколько сотен раз превышающих атмосферное, и при достаточно низких температурах.

Проверить справедливость закона Бойля-Мариотта можно совсем простыми средствами. Для этого достаточно иметь запаянную с одного конца стеклянную трубку, в которой столбик ртути закрывает некоторое количество воздуха (трубка Мельде). Объем воздуха можно измерять линейкой по длине воздушного столба в трубке (рис. 45), а о давлении можно судить по высоте столбика ртути при разных ориентациях трубки в поле тяжести.

Для наглядного изображения изменений состояния газа и происходящих с ним процессов удобно использовать так называемые -диаграммы, где по оси абсцисс откладываются значения объема, а по оси ординат - давления. Кривая на -диаграмме, соответствующая изотермическому процессу, называется изотермой.

Рис. 45. Простейший прибор для проверки закона Бойля-Мариотта (трубка Мельде)

Рис. 46. Изотермы газа на -диаграмме

Как следует из закона Бойля-Мариотта, газовые изотермы представляют собой гиперболы (рис. 46). Чем выше температура, тем дальше от координатных осей расположена соответствующая изотерма.

Закон Шарля. Зависимость давления газа от температуры при неизменном объеме была экспериментально установлена французским физиком Ж. Шарлем. Согласно закону Шарля, давление газа при постоянном объеме линейно зависит от температуры:

где - давление газа при О °С. Оказывается, что температурный коэффициент давления а одинаков для всех газов и равен

Закон Гей-Люссака. Аналогичный вид имеет и зависимость объема газа от температуры при неизменном давлении. Это было установлено на опыте французским физиком Гей-Люссаком, который нашел, что температурный коэффициент расширения одинаков для всех газов. Значение этого коэффициента оказалось таким же, как и коэффициента а в законе Шарля. Таким образом, закон Гей-Люссака можно записать в виде

где - объем газа при О °С.

Совпадение температурных коэффициентов в законах Шарля и Гей-Люссака не случайно и свидетельствует о том, что эти устанавливаемые на опыте газовые законы не являются независимыми. Ниже мы подробнее остановимся на этом.

Газовый термометр. Тот факт, что выражаемая законами Шарля и Гей-Люссака зависимость давления или объема от температуры одинакова для всех газов, делает особенно удобным выбор газа в качестве термометрического тела. Хотя на практике использовать газовые термометры в силу их громоздкости и тепловой инерционности неудобно, именно по ним производится градуировка других термометров, более удобных для практических применений.

Шкала Кельвина. Зависимость давления или объема от температуры в законах Шарля и Гей-Люссака станет еще проще, если перейти к новой температурной шкале, потребовав, чтобы линейная зависимость превратилась в прямую пропорциональность.

Изобразив выражаемую формулой (3) зависимость объема газа от температуры (рис. 47) и продолжив график влево до пересечения с осью температуры, легко убедиться, что продолжение графика пересекает ось Гпри значении температуры, равном поскольку Именно в эту точку нужно поместить начало новой температурной шкалы, чтобы можно было записать уравнения (2) и (3) как прямую пропорциональность. Эту точку называют абсолютным нулем температуры. Масштаб новой шкалы, т. е. единица измерения температуры, выбирается так же, как и в шкале Цельсия. На новой температурной шкале нулю градусов Цельсия соответствует температура градуса (точнее 273,15), а любая другая температура Т связана с соответствующей температурой по шкале Цельсия соотношением

Введенная здесь температурная шкала называется шкалой Кельвина, а единица измерения, совпадающая с градусом шкалы Цельсия, называется кельвином и обозначается буквой К. Иногда эта шкала называется Международной практической шкалой температуры.

При использовании температурной шкалы Кельвина график закона Гей-Люссака принимает вид, показанный на рис. 48, а формулы (2) и (3) можно записать в виде

Рис. 47. Выражаемая законом Гей-Люссака зависимость объема газа от температуры при постоянном давлении

Рис. 48. График закона Гей-Люссака в температурной шкале Кельвина

Коэффициент пропорциональности в (6) характеризует наклон графика на рис. 48.

Уравнение состояния газа. Экспериментальные газовые законы дают возможность установить уравнение состояния газа. Для этого достаточно воспользоваться любыми двумя из приведенных законов. Пусть некоторое количество газа находится в состоянии с объемом давлением и температурой Переведем его в другое (промежуточное) состояние, характеризуемое тем же значением температуры и некоторыми новыми значениями объема V и давления При изотермическом процессе выполняется закон Бойля- Мариотта, поэтому

Теперь переведем газ из промежуточного состояния в конечное состояние с тем же значением объема , что и в промежуточном состоянии, и некоторыми значениями давления и температуры При изохорическом процессе выполняется закон Шарля, поэтому

поскольку Подставляя в из (7) и учитывая, что окончательно получаем

Мы изменили все три макроскопических параметра и Т, и тем не менее соотношение (9) показывает, что для данного количества газа (числа молей комбинация параметров имеет одно и то же значение, в каком бы состоянии этот газ не находился. Это означает, что уравнение (9) представляет собой уравнение состояния газа. Его называют уравнением Клапейрона.

В приведенном выводе уравнения (9) не использовался закон Гей-Люссака. Однако легко видеть, что в нем содержатся все три газовых закона. Действительно, полагая в получаем для изобарического процесса соотношение что соответствует закону Гей-Люссака.

Уравнение Менделеева-Клапейрона. Возьмем один моль газа при нормальных условиях, т. е. при и нормальном атмосферном давлении . В соответствии с установленным на опыте законом Авогадро один моль любого газа (гелия, азота, кислорода и т. д.) занимает при нормальных условиях одинаковый объем литра. Поэтому для одного моля любого газа комбинация обозначаемая через и называемая универсальной газовой постоянной (или молярной газовой постоянной), имеет одно и то же значение:

С учетом (10) уравнение состояния одного моля любого газа можно записать в виде

Уравнение (11) легко обобщить для произвольного количества газа. Так как при тех же значениях температуры и давления молей газа занимают в раз больший объем, чем 1 моль, то

В таком виде уравнение состояния газа впервые было получено русским ученым Д. И. Менделеевым. Поэтому его называют уравнением Менделеева-Клапейрона.

Идеальный газ. Уравнение состояния газа (11) или (12) было получено на основе установленных на опыте газовых законов. Эти законы выполняются приближенно: условия их применимости

различны для разных газов. Например, для гелия они справедливы в более широком диапазоне температур и давлений, чем для углекислого газа. Приближенным является и уравнение состояния, полученное из приближенных газовых законов.

Введем в рассмотрение физическую модель - идеальный газ. Под этим будем понимать систему, для которой уравнение (11) или (12) является точным. Замечательной особенностью идеального газа является то, что его внутренняя энергия пропорциональна абсолютной температуре и не зависит от объема, занимаемого газом.

Как и во всех других случаях использования физических моделей, применимость модели идеального газа к тому или иному реальному газу зависит не только от свойств самого газа, но и от характера вопроса, на который требуется найти ответ. Такая модель не позволяет описать особенности поведения различных газов, но выявляет свойства, общие для всех газов.

С применением уравнения состояния идеального газа можно познакомиться на примере конкретных задач.

Задачи

1. В одном баллоне объемом находится азот при давлении . В другом баллоне объемом находится кислород при давлении Температура газов совпадает с температурой окружающей среды. Какое установится давление газов, если открыть кран трубки, соединяющей эти баллоны между собой?

Решение. После открывания крана газ из баллона с более высоким давлением будет поступать в другой баллон. В конце концов давление в баллонах выравняется, а газы перемешаются. Даже если в процессе перетекания газов температура изменилась, после установления теплового равновесия она снова сравняется с температурой окружающего воздуха.

Для решения задачи можно воспользоваться уравнением состояния идеального газа. Обозначив через количество газов в баллонах до открывания крана, имеем

В конечном состоянии смесь газов содержит молей, занимает объем и находится при давлении которое нужно определить. Применяя к смеси газов уравнение Менделеева-Клапейрона, имеем

Выражая из уравнений (13) и подставляя в (14), находим

В частном случае, когда исходные давления газов одинаковы, давление смеси после установления равновесия остается таким же. Интересен предельный случай соответствующий замене второго сосуда атмосферой. Из (15) при этом получаем где - давление атмосферы. Такой результат очевиден из общих соображений.

Обратим внимание на то, что выражаемый формулой (15) результат соответствует тому, что давление смеси газов равно сумме парциальных давлений каждого из газов, т. е. давлений, которые имел бы каждый из газов, занимая при той же температуре весь объем. Действительно, парциальные давления каждого газа можно найти с помощью закона Бойля-Мариотта:

Видно, что полное давление равное сумме парциальных давлений выражается формулой (15). Утверждение, что давление смеси химически невзаимодействующих газов равно сумме парциальных давлений, называется законом Дальтона.

2. Истопив печь, в дачном домике температуру воздуха повысили от 0 до Как при этом изменилась плотность воздуха?

Решение. Ясно, что объем помещения при протапливании печи не изменился, так как тепловым расширением стен можно пренебречь. Если бы мы нагревали воздух при неизменном объеме V в закрытом сосуде, его давление возросло бы, но плотность осталась бы неизменной. Но дачный домик не герметичен, поэтому неизменным остается давление воздуха, равное наружному атмосферному давлению. Ясно, что при повышении температуры Т должна измениться масса воздуха в помещении: какая-то его часть должна выйти через щели наружу.. Ясно, что столбик воды не будет вытолкнут из трубки только при очень малых изменениях температуры. Чтобы оценить изменение температуры, при котором столбик поднимается на заданное расстояние перепишем (19) следующим образом:

Полагая для оценки получаем Приведенная оценка показывает, что с помощью этого очень простого устройства можно обнаружить изменение температуры вплоть до 0,01 К, так как легко заменить изменение положения столбика на 1 мм.

Что такое время релаксации для термодинамической системы?

Какие ограничения должны быть наложены на скорость протекания процессов в газе, чтобы в любой момент времени имели смысл макроскопические параметры описывающие газ в состоянии равновесия?

Чем определяется числовое значение константы в правой части уравнения закона Бойля-Мариотта (1)?

Что имеют в виду, когда говорят, что изучаемая система находится в контакте с термостатом?

Предложите способ проверки закона Бойля-Мариотта с помощью описанного в тексте прибора (см. рис. 45).

Какие преимущества дает выбор газа в качестве термометрического тела?

Как связан выбор начала отсчета температур в шкале Кельвина со значением температурного коэффициента расширения газа?

Как устанавливается связь температур, измеренных по шкале Цельсия и шкале Кельвина?

Выведите уравнение состояния газа, используя законы Бойля-Мариотта и Гей-Люссака.

Уравнение Клапейрона было получено с использованием только двух газовых законов, однако содержит в себе все три закона. Как это связано с тем фактом, что у газов температурные коэффициенты давления и объема одинаковы?

Что такое универсальная газовая постоянная? Как она связана с законом Авогадро?

Какую физическую систему называют идеальным газом? Чем определяются условия применимости этой модели? От чего зависит внутренняя энергия идеального газа?

Можно ли объяснить установленный на опыте закон Дальтона для смеси газов, опираясь на уравнение Менделеева-Клапейрона?

Как изменится чувствительность к изменениям температур простого устройства, описанного в задаче 3, если верхнее отверстие трубки заткнуть?

ОПРЕДЕЛЕНИЕ

Для того чтобы формулы и законы в физике были более простыми для понимания и использования применяют разного рода модели и упрощения. Такой моделью является идеальный газ . Модель в науке - это упрощенная копия реальной системы.

Модель отражает наиболее существенные характеристики и свойства процессов и явлений. В модели идеального газа учитываются только основные свойства молекул, которые требуются для того, чтобы объяснить основы поведения газа. Идеальный газ напоминает реальный газ в довольно узком интервале давлений (p) и температур (T).

Самым важным упрощением идеального газа является то, что кинетическая энергия молекул считается гораздо большей, чем потенциальная энергия их взаимодействия. Столкновения молекул газа описывают при помощи законов упругого соударения шаров. Движение молекул считают прямолинейными в промежутках между столкновениями. Эти допущения позволяют получить специальные уравнения, которые называют уравнениям состояния идеального газа. Данные уравнения можно применять к описанию состояний реального газа при невысоких температурах и давлениях. Уравнения состояния и можно назвать формулами для идеального газа. Приведем также другие основные формулы, которые используют при исследовании поведения и свойств идеального газа.

Уравнения состояния идеального

Уравнение Менделеева — Клапейрона

где p - давление газа; V - объем газа; T — температура газа по шкале Кельвина; m - масса газа; - молярная масса газа; — универсальная газовая постоянная.

Уравнением состояния идеального газа так же является выражение:

где n - концентрация молекул газа в рассматриваемом объеме; .

Основное уравнение молекулярно-кинетической теории

При помощи такой модели, как идеальный газ, получают основное уравнение молекулярно-кинетической теории (МКТ) (3). Которое говорит о том, что давление газа -это результат огромного числа ударов его молекул о стенки сосуда, в котором газ находится.

где — средняя кинетическая энергия поступательного движения молекул газа; — концентрация молекул газа (N - число молекул газа в сосуде; V - объем сосуда); - масса молекулы газа; - среднеквадратичная скорость молекулы.

Внутренняя энергия идеального газа

Так как в идеальном газе принимают потенциальную энергию взаимодействия молекул равной нулю, то внутренняя энергия равна сумме кинетических энергий молекул:

где i - число степеней свободы молекулы идеального газа; - число Авогадро; - количество вещества. Внутренняя энергия идеального газа определена его термодинамической температурой (T) и пропорциональна массе.

Работа идеального газа

Для идеального газа в изобарном процессе () работу вычисляют при помощи формулы:

В изохорном процессе работа газа равна нулю, так как изменения объема нет:

Для изотермического процесса ():

Для адиабатного процесса () работа равна:

где i - число степеней свободы молекулы газа.

Примеры решения задач по теме «Идеальный газ»

ПРИМЕР 1

Задание Какова плотность смеси идеальных газов при температуре T и давлении p, если масса одного газа его молярная масса , масса второго газа молярная масса ?
Решение По определению плотность однородного вещества () это:

где m - масса всего вещества; V - его объем. Масса смеси газов находится как сумма отдельных компонент смеси:

Осталось найти объем, который занимает смесь газов при заданных условиях. Для этого запишем уравнение Менделеева - Клапейрона для смеси:

Давление газа возникает в результате столкновений молекул со стенками сосуда (и на помещенное в газ тело), в котором находится беспорядочно движущиеся молекулы газа . Чем чаше удары, тем они сильнее – тем выше давление. Если масса и объем газа неизменны, то его давление в закрытом сосуде всецело зависит от температуры. Давление зависит и от скорости поступательно движущихся газовых молекул. Единица измерения давления — паскаль p(Па) . Измеряют давление газа манометром (жидкостным, металлическим и электрическим).

Идеальный газ – это модель реального газа. За идеальный газ принимают газ в сосуде, когда молекула, пролетая от стенки до стенки сосуда не испытывает столкновения с другими молекулами. Точнее, Идеальный газ – это газ, взаимодействие между молекулами которого пренебрежимо мало ⇒ E к >> E р.

Основное уравнение МКТ связывает макроскопические параметры (давление p , объём V , температура T , масса m ) газовой системы с микроскопическими параметрами (масса молекулы, средняя скорость их движения):

Где n — концентрация, 1/м 3 ; m — масса молекулы, кг; — средняя квадратичная скорость молекул, м/с .

Уравнение состояния идеального газа - формула, устанавливающая зависимость между давлением, объёмом и абсолютной температурой идеального газа, характеризующее состояние данной системы газа. уравнение Менделеева — Клапейрона (для произвольной массы газа) . R = 8,31 Дж/моль·К универсальная газовая постоянная . pV = RT – (для 1 моля).

Часто необходимо исследовать ситуацию, когда меняется состояние газа при его неизменном количестве (m=const ) и в отсутствие химических реакций (M=const ). Это означает, что количество вещества ν=const . Тогда:

Для постоянной массы идеального газа отношение произве­дения давления на объем к абсолютной температуре в данном состоянии есть величина постоянная: уравнение Клапейрона.

Термодинамический процесс (или просто процесс) - это изменение состояния газа с течением времени. В ходе термодинамического процесса меняются значения макроскопических параметров - давления, объёма и температуры. Особый интерес представляют изопроцессы - термодинамические процессы, в которых значение одного из макроскопических параметров остаётся неизменным. Поочерёдно фиксируя каждый из трёх параметров, мы получим три вида изопроцессов.

Последнее уравнение называют объединённым газовым законом. Из него получаются законы Бойля - Мариотта, Шарля и Гей-Люссака. Эти законы называют законами для изопроцессов:

Изопроцессы – это процессы, которые совершаются при одинаковом параметре или Т-температуре, или V-объеме, или р-давлении.

Изотермический процесс — - закон Бойля - Мариотта (при постоянной температуре и данной массы газа произведение давления на объем есть величина постоянная)

Изобарный процесс - закон

Физическая химия: конспект лекций Березовчук А В

2. Уравнение состояния идеального газа

Изучение эмпирических газовых законов (Р. Бойль, Ж. Гей-Люссак) постепенно привело к представлению об идеальном газе, поскольку обнаружилось, что давление данной массы любого газа при постоянной температуре обратно пропорционально объему, занимаемому этим газом, и термические коэффициенты давления и объема с высокой точностью совпадают для различных газов, составляя, по современным данным, 1/273 град –1 . Придумав способ графического представления состояния газа в координатах «давление – объем», Б. Клапейрон получил объединенный газовый закон, связывающий все три параметра:

PV = BT ,

где коэффициент В зависит от вида газа и его массы.

Только через сорок лет Д. И. Менделеев придал этому уравнению более простой вид, записав его не для массы, а для единицы количества вещества, т. е. 1 кмоля.

PV = RT , (1)

где R – универсальная газовая постоянная.

Физический смысл универсальной газовой постоянной. R – работа расширения 1 кмоля идеального газа при нагревании на один градус, если давление не меняется. Для того, чтобы понять физический смысл R , представим себе, что газ находится в сосуде при постоянном давлении, и мы повысим его температуру на?T , тогда

PV 1 = RT 1 , (2)

PV 2 = RT 2 . (3)

Вычитая из (3) уравнение (2), получим

P (V 2 – V 1) = R (T 2 – T 1).

Если правая часть уравнения равна единице, т. е. мы нагрели газ на один градус, тогда

R = P ?V

Поскольку P = F /S , а?V равно площади сосуда S , умноженной на высоту подъема его поршня?h , имеем

Очевидно, что справа получим выражение для работы, и это подтверждает физический смысл газовой постоянной.

Из книги Физическая химия: конспект лекций автора Березовчук А В

ЛЕКЦИЯ № 1. Идеальный газ. Уравнение состояния реального газа 1. Элементы молекулярно-кинетической теории Науке известно четыре вида агрегатных состояний вещества: твердое тело, жидкость, газ, плазма. Переход вещества из одного состояния в другое называют фазовым

Из книги Пять нерешенных проблем науки автора Уиггинс Артур

4. Уравнение состояния реального газа Исследования показали, что уравнение Менделеева – Клапейрона не очень точно выполняется при исследовании разных газов. Голландский физик Я. Д. Ван-дер-Ваальс первым понял причины этих отклонений: одна из них состоит в том, что

Из книги Живой кристалл автора Гегузин Яков Евсеевич

Получение атмосферного газа После того как заработала солнечная ядерная топка, солнечный ветер (разреженная плазма большей частью из протонов и электронов, движущаяся ныне со скоростью около 400 км/ч) выдул почти весь первичный водород с гелием, а внутренние планеты

Из книги Движение. Теплота автора Китайгородский Александр Исаакович

Получение или утрата атмосферного газа Теперь приложим данные закономерности к внутренним планетам и посмотрим, как их первичная атмосфера приобрела нынешние очертания.Начнем с Венеры и Марса, а Землю прибережем напоследок.Венера Основное различие между нашими

Из книги «Вы, конечно, шутите, мистер Фейнман!» автора Фейнман Ричард Филлипс

О ПУЗЫРЬКАХ ГАЗА В КРИСТАЛЛЕ Кристаллофизики часто мрачно шутят, что дефекты в кристаллах появляются всего лишь в двух случаях: когда экспериментатор, который выращивает кристаллы, хочет этого и когда он этого не хочет.Я расскажу о том, как появляются в кристаллах

Из книги Источники питания и зарядные устройства автора

Теория идеального газа Свойства идеального газа, давшего нам определение температуры, очень просты. При постоянной температуре действует закон Бойля – Мариотта: произведение pV при изменениях объема или давления остается неизменным. При неизменном давлении сохраняется

Из книги Вы, разумеется, шутите, мистер Фейнман! автора Фейнман Ричард Филлипс

XII. Состояния вещества Железный пар и твердый воздух Не правда ли – странное сочетание слов? Однако это вовсе не чепуха: и железный пар, и твердый воздух существуют в природе, но только не при обычных условиях.О каких же условиях идет речь? Состояние вещества определяется

1. Элементы молекулярно-кинетической теории

Науке известно четыре вида агрегатных состояний вещества: твердое тело, жидкость, газ, плазма. Переход вещества из одного состояния в другое называют фазовым переходом. Вода, как известно, существует в трех агрегатных состояниях: в жидком (вода), твердом (лед), газообразном (пар). Это различие между тремя агрегатными состояниями определяется межмолекулярным взаимодействием и степенью сближения молекул.

Газ – агрегатное состояние вещества, в котором молекулы движутся хаотически, расположены на большом расстоянии друг от друга. В твердых телах расстояния между частицами малы, сила притяжения соответствует силе отталкивания. Жидкость – агрегатное состояние, промежуточное между твердым и газообразным. В жидкости частицы расположены близко одна к другой и могут перемещаться друг относительно друга; жидкость, как и газ, не имеет определенной формы.

Каждое из этих состояний можно описать набором некоторых параметров: например, состояние газа достаточно полно описывается тремя параметрами: объем, давление, температура.

Комбинация трех параметров, достаточно легко измеряемых, уже с середины ХVII века, когда были созданы барометры и термометры, хорошо описывает состояние газовой системы. Именно поэтому изучение сложных многоатомных систем началось с газов. У истоков наук химии и физики стоял Р. Бойль.

2. Уравнение состояния идеального газа

Изучение эмпирических газовых законов (Р. Бойль, Ж. Гей-Люссак) постепенно привело к представлению об идеальном газе, поскольку обнаружилось, что давление данной массы любого газа при постоянной температуре обратно пропорционально объему, занимаемому этим газом, и термические коэффициенты давления и объема с высокой точностью совпадают для различных газов, составляя, по современным данным, 1/273 град –1 . Придумав способ графического представления состояния газа в координатах «давление – объем», Б. Клапейрон получил объединенный газовый закон, связывающий все три параметра:

PV = BT ,

где коэффициент В зависит от вида газа и его массы.

Только через сорок лет Д. И. Менделеев придал этому уравнению более простой вид, записав его не для массы, а для единицы количества вещества, т. е. 1 кмоля.

PV = RT , (1)

где R – универсальная газовая постоянная.

Физический смысл универсальной газовой постоянной. R – работа расширения 1 кмоля идеального газа при нагревании на один градус, если давление не меняется. Для того, чтобы понять физический смысл R , представим себе, что газ находится в сосуде при постоянном давлении, и мы повысим его температуру на?T , тогда

PV 1 = RT 1 , (2)

PV 2 = RT 2 . (3)

Вычитая из (3) уравнение (2), получим

P (V 2 – V 1) = R (T 2 – T 1).

Если правая часть уравнения равна единице, т. е. мы нагрели газ на один градус, тогда

R = P ?V

Поскольку P = F /S , а?V равно площади сосуда S , умноженной на высоту подъема его поршня?h , имеем

Очевидно, что справа получим выражение для работы, и это подтверждает физический смысл газовой постоянной.

3. Кинетическая теория газов

Очень плодотворным в середине XIX века оказалось представление о молекулярном строении вещества. Когда была принята гипотеза А. Авогадро о том, что в киломоле любого вещества содержится одно и то же количество структурных единиц: 6,02 x 10 26 кмоля = 6,02 x 10 23 моля, поскольку молярная масса воды M(H 2 O) = 18 кг/кмоль, следовательно, в 18 литрах воды находится столько же молекул, сколько в 22,4 м 3 водяного пара. Это позволяет легко понять, что расстояние между молекулами газообразной воды (пара) значительно больше, в среднем на один порядок, чем в жидкой воде. Можно предположить, что это выполняется для любого вещества. Считая, что в газах молекулы движутся хаотически, можно вывести так называемое основное уравнение кинетической теории :

где Na – 6,02 x 10 26 кмоль = 6,02 x 10 23 моль – число Авогадро;

V M – молекулярный объем = 22,4 м 3 ;

m – масса одной молекулы;

v – скорость молекулы.

Преобразуем уравнение (4):

где E k – энергия одной молекулы.

Видно, что справа стоит полная кинетическая энергия всех молекул. С другой стороны, сравнивая с уравнением Менделеева – Клапейрона, видим, что это произведение равно RT.

Это позволяет выразить среднюю кинетическую энергию молекулы газа:

где к = R / Na – постоянная Больцмана, равная 1,38 ґ 10– 23 кДж/кмоль. Зная кинетическую энергию молекулы, можно рассчитать ее среднюю скорость

Около 1860 г. Д. К. Максвелл вывел функцию, описывающую распределение молекул газа по скоростям. Эта функция имеет на графике вид характерной кривой с максимумом около наиболее вероятной скорости примерно 500 м/с. Важно заметить, что существуют молекулы со скоростями, превышающими этот максимум. С другой стороны, уравнение (6) позволяет сделать вывод об увеличении доли молекул с большими скоростями при нагревании газа. Спустя почти 60 лет гениальная догадка Д. К. Максвелла была подтверждена в опытах О. Штерна .

4. Уравнение состояния реального газа

Исследования показали, что уравнение Менделеева – Клапейрона не очень точно выполняется при исследовании разных газов. Голландский физик Я. Д. Ван-дер-Ваальс первым понял причины этих отклонений: одна из них состоит в том, что вследствие огромного числа молекул, их собственный объем в целом сравним с объемом сосуда, в котором находится газ. С другой стороны, существование взаимодействия между молекулами газа слегка искажает показание манометров, с помощью которых обычно измеряют давление газа. В итоге Ван-дер-Ваальс получил уравнение следующего вида:

где а , в – постоянные величины для различных газов.

Недостаток этого уравнения в том, что а и в должны быть измерены для каждого газа эмпирически. Преимущество в том, что оно включает область перехода газа в жидкую фазу при высоких давлениях и низких температурах. Осознание этого сделало возможным получать любой газ в жидкой фазе.


Нажимая кнопку, вы соглашаетесь с политикой конфиденциальности и правилами сайта, изложенными в пользовательском соглашении